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Abstract

We study the problem of estimating a distribution over a finite alphabet from an i.i.d.
sample, with accuracy measured in relative entropy (Kullback-Leibler divergence). While
optimal expected risk bounds are known, high-probability guarantees remain less well-
understood. First, we analyze the classical Laplace (add-1) estimator, obtaining matching
upper and lower bounds on its performance and showing its optimality among confidence-
independent estimators. We then characterize the minimax-optimal high-probability risk,
which is attained via a simple confidence-dependent smoothing technique. Interestingly, the
optimal non-asymptotic risk exhibits an additional logarithmic factor over the ideal asymp-
totic risk. Next, motivated by scenarios where the alphabet exceeds the sample size, we
investigate methods that adapt to the sparsity of the distribution at hand. We introduce an
estimator using data-dependent smoothing, for which we establish a high-probability risk
bound depending on two effective sparsity parameters. As part of the analysis, we also
derive a sharp high-probability upper bound on the missing mass.
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1 Introduction

1.1 Problem setting

Estimating a discrete probability distribution from a finite sample is a fundamental problem
in statistics, machine learning, and information theory. In this work, we consider the following
variant of this problem. Let P be an unknown probability distribution on the finite set {1, . . . , d}
(identified with the vector (p1, . . . , pd), where pj denotes the probability of the class j); given
access to an i.i.d. sample X1, . . . , Xn from P , find a distribution P̂n = (p̂1, . . . , p̂d) such that the
Kullback-Leibler divergence or relative entropy

KL(P, P̂n) =
d∑

j=1

pj log
(pj
p̂j

)
(1)

is small, with high probability over the random draw of the i.i.d. sample X1, . . . , Xn from P .
The relative entropy (1) is a natural loss function for estimating distributions, which is com-

monly used in several fields: in statistics [vdV98, vdG99], due to its connection with maximum
likelihood estimation; in machine learning, as the excess risk for prediction under logarithmic
(cross-entropy) loss [Vap00, Bac24]; in information theory, owing to its interpretation in terms
of excess code-length in data compression [CT06, Gas18, PW23]; and in natural language pro-
cessing, through its link with the “perplexity” metric for evaluating language models [JM25].

An important feature of the Kullback-Leibler divergence, compared to other common diver-
gences between probability distributions such as the total variation and Hellinger distances, is
that it penalizes significant underestimation of true frequencies. To consider an extreme case,
if the estimator P̂ assigns a probability p̂j = 0 to a class j with probability pj ̸= 0, then the
Kullback-Leibler divergence KL(P, P̂n) is infinite. This aligns with the needs of various appli-
cations: for instance, in a forecasting context where classes correspond to different outcomes,
assigning a probability of 0 to outcomes that are in fact possible would constitute a severe un-
derestimation of the underlying uncertainty. In addition, in the context of language models, one
may be interested in generating new sentences that are not present in the training corpus; this
requires assigning positive probabilities to sequence of words that have not been observed.
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Empirical distribution. Perhaps the most natural estimator is the empirical distribution
Pn = (Nj/n)1⩽j⩽d, where for j = 1, . . . , d, we let

Nj =

n∑
i=1

1(Xi = j) (2)

denote the number of occurrences of the class j in the sample X1, . . . , Xn. This estimator
happens to coincide with the maximum likelihood estimator (MLE) over the class Pd of all
probability distributions on {1, . . . , d}. As such, it enjoys rather strong optimality properties in
the “low-dimensional” asymptotic regime, where the number d of classes and distribution P ∈ Pd

are fixed, while the sample n goes to infinity [LCY00].
In particular, if all classes j = 1, . . . , d have nonzero probability, then Pn converges to P

as n → ∞ at a rate of 1/
√
n in distribution, is asymptotically normal and efficient [vdV98,

§5.2–5.6]. As a result, 2n · KL(P, Pn) converges in distribution to a χ2 distribution with d − 1
degrees of freedom. Together with a standard tail bound on χ2 distributions, this implies the
following guarantee: for any fixed d ⩾ 2, P ∈ Pd, and δ ∈ (0, 1), one has

lim sup
n→+∞

PP

(
KL(P, Pn) ⩾

d+ 2 log(1/δ)

n

)
⩽ δ . (3)

This guarantee features the optimal dependence on the dimension d, confidence level 1− δ and
sample size, which may serve as a benchmark for an ideal upper bound.

On the other hand, a significant limitation of the guarantee (3) is that it is purely asymptotic,
in that it holds in the limit of sufficiently large sample size with all other parameters being
kept fixed. This is at odds with the modern paradigm of high-dimensional models, where the
dimension d may be large and possibly comparable to the sample size n. Likewise, one may be
interested in high-confidence bounds (that is, in small values in δ), as well as in guarantees that
hold uniformly over all distributions P ∈ Pd. All of these considerations highlight the limitations
of purely asymptotic guarantees, and instead call for a quantitative, non-asymptotic analysis.

It should be emphasized that the lack of uniformity over the distribution P of the point-
wise asymptotic guarantee (3) is not merely an artifact of its formulation, but instead reflects a
fundamental limitation of the estimator Pn itself. Indeed, the empirical distribution Pn assigns
a probability of 0 to classes that do not appear; such a configuration may occur in a finite
sample, especially in the presence of rare classes. Hence, the MLE is generally inadequate for
the purpose of density estimation in relative entropy, due to its propensity to underestimate
uncertainty and to produce overly sharp probability estimates.

Laplace smoothing. In order to mitigate this shortcoming of the MLE, a natural approach
is to “smooth out” or regularize the empirical distribution, by assigning some probability to
all classes. Arguably the simplest and most classical method to achieve this is the add-one
smoothing technique, also known as Laplace rule of succession [Lap25], which consists in adding
1 to the count of each class. The Laplace estimator is then given by P̂n = (p̂1, . . . , p̂d), where

p̂j =
Nj + 1

n+ d
for j = 1, . . . , d . (4)

This method was first proposed (in the case d = 2) by Laplace [Lap25, p. 23] in his treatise on
probability. Laplace deduced this estimator from what would now be called a Bayesian approach,
of which it constitutes one of the earliest instances. Indeed, it coincides with the Bayes predictive
posterior distribution under a uniform prior on the probability simplex Pd. This classical method
has found use in various fields, including universal coding (see, e.g., [CT06, p. 435]) and natural
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language processing (e.g., [JM25, p. 46]). We also note in passing that a closely related method
(adding 1/2 to the count of each class) was proposed by Krichevsky and Trofimov [KT81].

The Laplace estimator P̂n turns out to achieve an optimal bound in expectation [Cat97,
MG22]: for any P ∈ Pd and n, d ⩾ 2, one has

EP

[
KL(P, P̂n)

]
⩽ log

(
1 +

d− 1

n+ 1

)
⩽
d

n
. (5)

This matches the asymptotic rate of the MLE, but now non-asymptotically and uniformly over
all distributions on {1, . . . , d}. At the same time, the in-expectation bound (5) falls short of
constituting a non-asymptotic analogue of the asymptotic tail bound (3), as it only provides
limited information on the tails of the estimation error KL(P, P̂n).

Main questions. In this work, we investigate the best possible high-probability guarantees
for estimating discrete distributions in relative entropy, either through the Laplace estimator or
other procedures. Specifically, the previous discussion naturally raises the following questions:

1. Does there exist a constant c > 0 such that, for any n ⩾ d ⩾ 2 and δ ∈ (0, 1/2), there
exists an estimator P̂n for which

sup
P∈Pd

PP

(
KL(P, P̂n) ⩾ c

d+ log(1/δ)

n

)
⩽ δ ? (6)

If not, then what is the best possible uniform high-probability guarantee?

2. Does the Laplace estimator P̂n achieve the ideal high-probability bound (6)? If not, then
what is the best high-probability guarantee for the Laplace estimator?

1.2 Existing guarantees

The previous questions will be addressed in the following sections, but before this, we survey
existing high-probability guarantees for estimation of discrete distributions in relative entropy.

High-probability guarantees for the Laplace estimator. As a starting point, the in-
expectation bound (5) for the Laplace estimator P̂n implies (by Markov’s inequality) the follow-
ing bound: for every distribution P ∈ Pd, with probability at least 1− δ one has

KL(P, P̂n) ⩽
d

nδ
. (7)

However, this naïve bound is significantly worse than the ideal asymptotic bound (3). For
instance, it only shows that a bound of order d/n holds with constant probability, rather than
(asymptotically) with probability at least 1− e−d as in (6).

A sequence of recent works has progressively tightened the bound (7). First, Bhattacharyya,
Gayen, Price, and Vinodchandran [BGPV21, Theorem 6.1] established a concentration inequality
for KL(P, P̂n), which implies the following bound: for every P ∈ Pd, with probability 1− δ,

KL(P, P̂n) ≲
d log(n) log(d/δ)

n
, (8)

where we use the notation A ≲ B to mean that A ⩽ cB for some universal constant c. While
this guarantee significantly improves over the bound (7) for small values of δ, it falls short of
the asymptotic bound (3) due to the fact that the dimension d and deviation term log(1/δ) are
multiplied, rather than decoupled as in (6).
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A significantly improved bound was established by Han, Jana and Wu [HJW23, Lemma 17],
who showed that, with probability 1− δ,

KL(P, P̂n) ≲
d+

√
d log3(1/δ)

n
. (9)

This implies an optimal bound of d/n when log(1/δ) ≲ d1/6, but leads to (presumably) subop-
timal guarantees in the regime log(1/δ) ≫ d1/6.

Finally, the best available high-probability guarantees on the Laplace estimator are due to
Canonne, Sun and Suresh [CSS23], who showed that for some absolute constant c > 0, with
probability at least 1− δ,

KL(P, P̂n) ⩽ EP

[
KL(P, P̂n)

]
+ c

√
d log5/2(d/δ)

n
≲
d+

√
d log5/2(1/δ)

n
(10)

(where we used (5) and that
√
d log5/2 d ≲ d). In particular, this removes a

√
log(1/δ) factor in

the deviation term compared to (9), leading to optimal guarantees in the larger range log(1/δ) ≲
d1/5. Nevertheless, the bound still deteriorates in the regime log(1/δ) ≫ d1/5.

Upper bound for an alternative estimator. Recently, van der Hoeven, Zhivotovskiy and
Cesa-Bianchi [vdHZCB23] proposed an alternative estimator P̂HZC

n , based on a high-probability
online-to-batch conversion scheme, which achieves the following high-probability guarantee: for
any distribution P , with probability at least 1− δ one has

KL(P, P̂HZC
n ) ≲

d+ log(n) log(1/δ)

n
. (11)

In many regimes of interest, this constitutes the best known high-probability guarantee in the
literature, for any estimator. On the other hand, this result raises important questions. First,
the bound (11) features an additional log n factor compared to the asymptotic rate (3), which
can be avoided in some regimes (e.g., in light of (10)), leaving open the question of the best
possible statistical guarantees. Second, the estimator P̂HZC

n is computationally expensive: it
requires integrating non-log-concave functions over the probability simplex, the cost of which a
priori scales exponentially in the dimension d via a grid-based approach. This raises the question
of whether or not the problem of high-probability estimation of discrete distributions exhibits a
statistical-computational trade-off, that is, if a computational cost exponential in d is necessary
to achieve a guarantee as strong as (11).

1.3 Paper outline

This paper is organized as follows. In Section 2, we describe the best possible high-probability
guarantee on the Laplace estimator (Theorems 1 and 2), and show in particular that this method
is optimal among “confidence-independent” estimators. In Section 3, we characterize the best
possible uniform guarantees for any estimator (Theorem 3 and 4); the upper bound is achieved
by a simple modification of the Laplace estimator using a confidence-dependent smoothing level.

In Section 4, in order to handle situations where the total number of classes is very large,
we study guarantees that depend on the “effective sparsity” of the distribution at hand. We
establish in particular a minimax lower bound for estimating sparse distributions that holds
with high probability (Proposition 1), and then propose simple estimators using data-dependent
smoothing that achieve high-probability guarantees (Theorem 5); these guarantees adapt to two
natural “effective sparsity” parameters of the distribution. In Section 5, we present a sharp
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high-probability bound on the missing and underestimated masses (Theorem 6), which is used
in our analysis of the sparse case but may also be of independent interest.

The proof of our high-probability upper bounds for estimation are provided in Section 6, while
Section 7 contains the proofs of lower bounds for estimation. Section 8 is devoted to the proof
of Theorem 6 on the missing mass, and Section 9 to the elementary proof of the in-expectation
guarantee of Proposition 2. Finally, Section 10 gathers various technical lemmata.

1.4 Related work

High-probability guarantees in relative entropy. As discussed in Section 1.2, our con-
tribution belongs to a series of recent works [BGPV21, HJW23, CSS23, vdHZCB23] on high-
probability guarantees for estimation of discrete distributions in relative entropy. The best
known guarantee for the Laplace estimator is the upper bound (10) from [CSS23], while the best
guarantee (in many regimes) for any estimator is the upper bound (11) from [vdHZCB23].

Other aspects of estimation of discrete distributions. Naturally, estimation of discrete
distributions is a basic problem, which has been investigated from various other perspectives
in the literature. First, one may consider different loss functions than the relative entropy; we
refer to [KOPS15, Can20] (and references therein) for an overview of existing guarantees under
various losses. Second, even in relative entropy, the minimax-optimal in-expectation bound (5)
has been refined in various ways. Braess and Sauer [BS04] characterize asymptotically optimal
numerical constants in the minimax expected relative entropy risk, in the regime where d is fixed
while n → ∞. In another direction, Orlitsky and Suresh [OS15] consider a more demanding
competitive optimality criterion, in the spirit of the empirical Bayes paradigm [Rob51, Goo53].

Concentration properties of the empirical distribution. A relevant but distinct ques-
tion concerns the concentration properties of the empirical distribution Pn. As discussed above,
the relative entropy KL(P, Pn) does not enjoy distribution-free concentration properties, since
Pn may assign zero probability to classes with positive true probability. On the other hand,
the opposite configuration cannot happen: a class j with pj = 0 cannot appear in the sample,
which qualitatively suggests that the reverse relative entropy KL(Pn, P ) may be well-behaved.
This is indeed the case: the theory of large deviations suggests that the reverse relative entropy
KL(Pn, P ) sharply encodes the concentration properties of the empirical distribution. Specifi-
cally, a classical inequality [CT06, Theorem 11.2.1 p. 356] established by the so-called “method
of types” [Csi98] states that, for any n, d ⩾ 2, P ∈ Pd and δ ∈ (0, 1), one has

PP

(
KL(Pn, P ) ⩾

d log(n+ 1) + log(1/δ)

n

)
⩽ δ . (12)

While this bound is distribution-free, it features a presumably suboptimal log(n+1) factor. This
classical bound has been tightened in a series of recent works [MJT+20, Agr20, GR20, BP23,
Agr22] on concentration of the reverse relative entropy. In particular, it follows from [Agr22,
Corollary 1.7] (although this could also be deduced up to constants from the earlier work [Agr20])
that, for any n, d ⩾ 2, P ∈ Pd and δ ∈ (0, 1),

PP

(
KL(Pn, P ) ⩾

6d+ 6 log(1/δ)

n

)
⩽ δ . (13)

This deviation bound effectively settles the probabilistic question of optimal concentration of
the empirical distribution. In this work, we study the complementary statistical question of
optimal high-probability estimation guarantees in relative entropy KL(P, P̂n).
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Missing mass. As part of our analysis, we study the tail behavior of the “missing mass”. We
refer to Section 5 for a discussion of existing high-probability bounds on this quantity.

1.5 Notation

Throughout this work, we let n ⩾ 1 denote the sample size and d ⩾ 2 the number of classes. If
A is a finite set, we denote by |A| its cardinality. We identify the set of probability distributions
on [d] = {1, . . . , d} with the set of probability vectors Pd = {(p1, . . . , pd) ∈ Rd

+ :
∑d

j=1 pj = 1},
where for 1 ⩽ j ⩽ d we let pj denote the probability of the class j. For j ∈ {1, . . . , d}, we
let δj ∈ Pd denote the Dirac mass at j, identified with the j-th basis vector in Rd. Given
two probability distributions P = (p1, . . . , pd) ∈ Pd and Q = (q1, . . . , qd) ∈ Pd, we define the
Kullback-Leibler divergence or relative entropy between P and Q by

KL(P,Q) =

d∑
j=1

pj log
(pj
qj

)
,

with the convention that p log(p/q) equals 0 if p = 0, and +∞ if p > 0 but q = 0. For u, v ∈ R+,
we let D(u, v) = u log(uv ) − u + v with similar conventions. Since

∑d
j=1 pj =

∑d
j=1 qj = 1, we

have

KL(P,Q) =

d∑
j=1

D(pj , qj) . (14)

Additionally we define the function h : R+ → R+ by h(x) = x log x − x + 1 for x > 0 and
h(0) = 1, so that D(u, v) = v · h(u/v) for u, v ∈ R+.

Given a distribution P ∈ Pd, the sample X1, . . . , Xn is comprised of n i.i.d. random variables
with distribution P . We use the notations PP and EP to respectively denote probabilities and
expectations when the distribution of (X1, . . . , Xn) is P⊗n. For j = 1, . . . , d, we defined the
count of the class j as its number of occurrences in the sample X1, . . . , Xn, namely

Nj = Nj,n =

n∑
i=1

1(Xi = j) . (15)

An estimator is a map Φ : [d]n → Pd, which we identify (following a standard convention) with
the random variable P̂n = Φ(X1, . . . , Xn) taking values in Pd.

Finally, for any λ ∈ R+, we denote by Poisson(λ) the Poisson distribution with intensity λ,
which assigns a probability of e−λλk/k! to any non-negative integer k ∈ N.

2 Optimal guarantees for the Laplace estimator

In this section, we consider the question of optimal high-probability guarantees for the classical
Laplace (add-one) estimator, defined by (4). In Section 2.1, we state our main upper bound,
while in Section 2.2 we provide a matching lower bound for a large class of estimators that
includes the Laplace estimator.

2.1 Upper bound for the Laplace estimator

Our first main result is a finite-sample high-probability bound for the Laplace estimator.

Theorem 1. For any n ⩾ 12, d ⩾ 2 and P ∈ Pd, the Laplace estimator P̂n defined by (4)
achieves the following guarantee: for any δ ∈ (e−n/6, e−2),

PP

(
KL(P, P̂n) ⩾ 110000

d+ log(1/δ) log log(1/δ)

n

)
⩽ 4δ . (16)
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The proof of Theorem 1 is provided in Section 6.4.
We note in passing that the condition δ > e−n/6 in Theorem 1 is not restrictive, as it

constitutes the nontrivial regime. Indeed, when n ⩾ d and δ = e−n/6, the upper bound (16) is
of order log n. But an upper bound KL(P, P̂n) ⩽ log(2n) actually holds deterministically (thus
for δ = 0) since for every j = 1, . . . , d one has p̂j ⩾ 1/(n+ d) ⩾ 1/(2n), so that pj/p̂j ⩽ 2n.

Theorem 1 improves the previously best known upper bound (10) on the Laplace esti-
mator from [CSS23], which is of order {d +

√
d log5/2(1/δ)}/n. Since δ > e−n/6 and thus

log log(1/δ) ⩽ log n, it also improves the previously best known upper bound (11) of order
{d+ log(n) log(1/δ)}/n for this problem, achieved by the (computationally involved) estimator
from [vdHZCB23]. This shows in particular that such guarantees can be achieved in a compu-
tationally efficient manner, specifically in time linear in n.

A curious feature of the upper bound (16) is that it exhibits non-standard tails, in the form
of the log(1/δ) log log(1/δ)/n deviation term. This should be contrasted with the more common
quantiles of exponential and Poisson variables, respectively of order log(1/δ) and log(1/δ)

log log(1/δ) . In
particular, this tail bound is super-exponential, which points to a technical difficulty in its proof:
it cannot be established by the standard Chernoff method based on the moment generating
function (m.g.f.). Indeed, super-exponential tails lead to an infinite m.g.f.1, and conversely a
finite m.g.f. would lead to sub-exponential tails. For this reason, the proof does not use the
m.g.f. and instead proceeds by controlling raw moments (Lp norms).

We refer to Section 6 for a description of the main tools in the proof of Theorem 1, which
also serve for high-probability upper bounds stated in subsequent sections. Roughly speaking,
the key step in the analysis is to control the contribution to the error KL(P, P̂n) of classes
j = 1, . . . , d for which the Laplace estimate significantly underestimates the true probability, as
such classes may lead to a potentially large errors.

2.2 Lower bound for confidence-independent estimators

It should be noted that the uniform non-asymptotic high-probability bound of Theorem 1 for
the Laplace estimator exceeds the asymptotic tail bound (3) of the MLE (or Laplace estimator)
by a factor of log log(1/δ) in the deviation term. This raises the question of whether this extra
factor is necessary, or whether it can be removed by a more precise analysis.

As it turns out, the extra log log(1/δ) factor is necessary, not only for the Laplace estimator
but in fact for any “confidence-independent” estimator P̂n = Φ(X1, . . . , Xn) that does not depend
on the desired confidence level 1− δ.

Theorem 2. Let n ⩾ d ⩾ 4000 and κ ⩾ 1. Let Φ : [d]n → Pd be an estimator such that,
denoting P̂n = Φ(X1, . . . , Xn) we have for any P ∈ Pd:

PP

(
KL(P, P̂n) ⩽

κd

n

)
> 0 . (17)

Then, for any δ ∈ (e−n, e−16κ2
), there exists a distribution P ∈ Pd such that

PP

(
KL(P, P̂n) ⩾

d+ log(1/δ) log log(1/δ)

5000n

)
⩾ δ . (18)

The proof of Theorem 2 (based on Lemma 12) can be found in Section 7.1. The main idea
of the proof is that, in order to achieve the guarantee (17), the estimator P̂n cannot be “too

1Technically speaking, the m.g.f. of the variable KL(P, P̂n) is actually finite, due to the deterministic bound
KL(P, P̂n) ⩽ log(2n). However, this (loose) bound depends on n, hence bounds based on the m.g.f. would lead
to deviation terms with an additional dependence on n compared to (16).
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far” from the empirical distribution Pn. But in this case, it may significantly underestimate the
probability of some classes with small probability δ, leading to the lower bound (18).

A few comments may help clarify the meaning of Theorem 2. First, one should think of
the parameter κ ⩾ 1 as an absolute constant. The condition (17) states that the estimator P̂n

achieves a bound of order d/n with positive probability for any distribution P . This holds in
particular when the estimator P̂n achieves an optimal in-expectation bound EP [KL(P, P̂n)] ⩽
κd/n, and more generally when the estimator achieves an optimal bound of κd/n in the regime
of constant (bounded away from 0 and 1) confidence level. The first condition applies with κ = 1
to the Laplace estimator, in light of its in-expectation bound (5). We refer to such estimators,
including those that are optimal in expectation, as “confidence-independent”.

The content of Theorem 2 is that such an estimator must necessarily incur the log log(1/δ)
factor for small values of δ. In other words, the extra log log(1/δ) factor in the high-confidence
regime is a necessary price to pay for optimality in the constant-confidence regime.

When compared with the upper bound of Theorem 1, the lower bound of Theorem 2 implies
that the Laplace estimator is optimal in a minimax sense, over a large class of estimators. This
may be of interest in itself given the simplicity of this procedure.

3 Minimax-optimal guarantees for confidence-dependent estima-
tors

An obvious restriction in the lower bound of Theorem 2 is that it only applies to “confidence-
independent” estimators—in particular, to those that achieve an optimal d/n guarantee with
constant probability. This leaves open the possibility that, for a given δ ∈ (0, 1/2), improved
guarantees with probability 1− δ may be achieved by an estimator P̂n,δ = Φδ(X1, . . . , Xn) that
depends on δ; that is, which is tuned for the desired confidence level 1− δ, at the cost of being
suboptimal at constant confidence levels. We call such an estimator “confidence-dependent”.

In this section, we investigate optimal high-probability guarantees for confidence-dependent
estimators; Section 3.1 is dedicated to the upper bound, and Section 3.2 to the lower bound.

3.1 Upper bound via confidence-dependent smoothing

Since the gap between the asymptotically ideal tail bound (3) and the non-asymptotic upper
and lower bounds of Section 2 consists in an extra log log(1/δ) factor in the deviation term, the
question is whether this factor can be improved by a confidence-dependent estimator. Theorem 3
below answers this question in the affirmative:

Theorem 3. For any n ⩾ 12, d ⩾ 2 and δ ∈ (e−n/6, e−2), define the estimator P̂n,δ = (p̂1, . . . , p̂d)
by, for j = 1, . . . , d,

p̂j =
Nj + λδ
n+ λδd

where λδ = max

{
1,

log(1/δ)

d

}
. (19)

Then, for any P ∈ Pd, we have

PP

(
KL(P, P̂n,δ) ⩾ 110000

d+ log(d) log(1/δ)

n

)
⩽ 4δ . (20)

The estimator (19) in Theorem 3 can be seen as a confidence-dependent modification of the
Laplace estimator. Specifically, in the low and moderate-confidence regime where δ ⩾ e−d, the
estimator P̂n,δ coincides with the Laplace estimator. On the other hand, in the high-confidence
regime where δ < e−d, it smooths the empirical distribution more strongly than the Laplace
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estimator, with a confidence-dependent level of smoothing—the higher the desired confidence
level, the stronger the smoothing.

We now comment on the quantitative upper bound of Theorem 3. First, note that the
condition δ > e−n/6 is not restrictive, since for δ = e−n/6 and n ⩾ d the upper bound (20)
is of order log d; but a deterministic upper bound of log d may be achieved by letting P̂n =
(1/d, . . . , 1/d) be the uniform distribution. In fact, for δ ⩽ e−n/6 the estimator P̂n,δ also satisfies
a deterministic bound KL(P, P̂n,δ) ⩽ log(7d), as p̂j ⩾ 1/(7d) for j = 1, . . . , d.

Second, observe that the upper bound (20) provides an improvement over the best possible
guarantee for confidence-independent estimators, as characterized by Theorems 1 and 2. This
amounts to saying that, regardless of δ ∈ (0, e−2) and d ⩾ 2, one has

d+ log(d) log(1/δ)

n
≲
d+ log(1/δ) log log(1/δ)

n
. (21)

To see why (21) holds, consider the following two cases. If log(1/δ) ≲ d/ log d, then the left-hand
side of (21) is of order d/n and the bound holds. On the other hand, if log(1/δ) ≳ d/ log d ≳

√
d,

then log d ≲ log log(1/δ) and the bound (21) also holds.
Hence, Theorems 2 and 3 together imply an advantage of confidence-dependent estimators

over confidence-independent ones. We note that such an advantage has been previously observed
for a different problem, namely mean estimation under heavy-tailed noise [DLLO16, Cat12]. It
is notable that it also manifests itself in the basic problem of estimation of discrete distributions,
in the absence of robustness constraints.

We refer to Section 6.5 for the proof of Theorem 3, which shares a common structure with
that of Theorem 1, although some details differ. Again, the core of the analysis is to control
the contribution to the relative entropy of classes whose frequency is underestimated, which is
technically achieved through sharp moment estimates on the corresponding terms.

3.2 Lower bound for confidence-dependent estimators

While the upper bound of Theorem 3 for the estimator P̂n,δ circumvents the lower bound of The-
orem 2 for confidence-independent estimators, it still exceeds the ideal asymptotic tail bound (3)
by a factor of log d in the deviation term. Theorem 4 below shows that this extra log d factor
cannot be avoided, even for confidence-dependent estimators:

Theorem 4. Let n ⩾ d ⩾ 5000 and δ ∈ (e−n, e−1). For any estimator Φ = Φδ : [d]n → Pd,
there exists a distribution P ∈ Pd such that, letting P̂n = P̂n,δ = Φδ(X1, . . . , Xn) we have

PP

(
KL(P, P̂n) ⩾

d+ log(d) log(1/δ)

5000n

)
⩾ δ . (22)

Together, Theorems 3 and 4 characterize, up to universal constant factors, the minimax high-
probability risk (in other words, the “sample complexity”) for estimation of discrete distributions
in relative entropy. An interesting feature of this lower bound is that it exceeds the asymptotic
rate (3) by a log d term; this establishes a separation between asymptotic guarantees and uniform
non-asymptotic guarantees.

The proof of Theorem 4 relies on the following lemma, which is proved in Section 7.2.

Lemma 1. Let n ⩾ d ⩾ 2 and δ ∈ (e−n, e−1). There exists a set F = Fn,d,δ ⊂ Pd of
d distributions with support size at most 2 such that the following holds. For any estimator
P̂n = Φ(X1, . . . , Xn), there exists a distribution P ∈ F such that

PP

(
KL(P, P̂n) ⩾

log(d) log(1/δ)

14n

)
⩾ δ . (23)
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The idea behind Lemma 1 is quite simple, and can be summarized as follows: let P be either a
Dirac mass at 1, namely P = δ1 = (1, 0, . . . , 0), or a mixture of the form (1− log(1/δ)

n )δ1+
log(1/δ)

n δj
for some j = 2, . . . , d. Then, regardless of which of these distributions P is, with probability at
least of order δ, only the first class is observed (X1 = · · · = Xn = 1). In this case, it is impossible
to tell which distribution P is. In order to avoid incurring a large error in the first case where
P = δ1, one must assign a large probability to the first class, and thus a low probability to all
remaining classes. However, this entails a large error in the second case. Specifically, the extra
log(d) factor comes from the fact that in the second case where P puts some mass on a class
j ∈ {2, . . . , d}, no information on j is available if only the first class is observed. Hence, all
the remaining mass must be shared among the d − 1 remaining classes j = 2, . . . , d, effectively
dividing by d− 1 the per-class probability and thus inflating the relative entropy.

We note in passing that Lemma 1 has broader implications to the theory of aggregation and
density estimation, beyond the present context of estimation of discrete distributions. Indeed,
it is known from [YB99, Cat04] (building on an idea of Barron [Bar87]), that for any finite
model/class F of distributions, given an i.i.d. sample of size n from an unknown distribution
P ∈ F , there exists an estimator P̂n such that EP [KL(P, P̂n)] ⩽ log(|F|)/n for all P ∈ P. This
naturally raises the question of whether a corresponding ideal high-probability guarantee, of the
form PP (KL(P, P̂n) ⩾ C {log |F| + log(1/δ)}/n) ⩽ δ for some absolute constant C, can also
be achieved, possibly by another estimator. Lemma 1 shows that this is not the case: since
|Fn,d,δ| = d, the best tail bound one may hope for is of order log(|F|) log(1/δ)/n.

4 Adaptation to the effective support size

The results of Section 3 settle the question of the minimax-optimal high-probability guarantees.
In addition, the results of Section 2 show that the classical Laplace estimator is rather close to
being optimal, in the same sense.

While these results attest to the soundness of the Laplace rule—and of its confidence-
dependent modification—, one should keep in mind that in several applications such as natural
language processing, its use has been supplanted by that of more advanced methods, such as
Kneser-Ney smoothing [KN95, CG99].

This apparent contradiction between theory and practice comes from the fact that we have
so far focused on minimax guarantees that hold uniformly over all distributions. By itself, this
uniformity is a strength, as it requires no restrictive assumptions on the true distribution. In
addition, it is not obviously detrimental, given that the limiting risk (3) of the MLE does not
depend on the distribution P ∈ Pd, as long as the latter assigns positive probability to all classes.

Nevertheless, this last restriction points towards a possible improvement: if only s < d
classes have positive probability, then by (3), the limiting high-probability risk of the MLE
scales as {s + log(1/δ)}/n, which can be much smaller than d/n if s ≪ d. This suggests that,
more generally, the complexity of distribution estimation should be governed by some notion of
support size, such as the number of positive or (for a fixed sample size) large enough probabilities.

Indeed, while the minimax rate of d/n cannot be improved for worst-case distributions that
are approximately uniform over {1, . . . , d}, distributions that arise in practice often exhibit
a non-uniform structure, with a small number of frequent classes and a large number of less
frequent classes. Under such a configuration, it may be possible to estimate the distribution P
even when the sample size n is smaller than the total number d of classes.

In this section, we consider high-probability upper and lower bounds for estimation of discrete
distributions, which depend on suitable notions of “support size” of the distribution. Section 4.1
contains minimax lower bounds for estimation of sparse distributions, while Section 4.2 is devoted
to high-probability upper bounds for suitable adaptive estimators.
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4.1 Minimax lower bounds for sparse distributions

We start by establishing minimax lower bounds on the best possible estimation guarantee for
“sparse” distributions. Since we are interested in lower bounds, we consider a small class of
sparse distributions P , namely distributions with support size at most s ⩽ d. Naturally, such
lower bounds transfer to larger classes, that is, to less stringent notions of sparsity.

For any P ∈ Pd, we let supp(P ) = {1 ⩽ j ⩽ d : pj > 0} denote the support of P . In addition,
for 1 ⩽ s ⩽ d we define the class Ps,d = {P ∈ Pd : |supp(P )| ⩽ s} of probability distributions
on {1, . . . , d} supported on at most s elements. We call such distributions s-sparse.

Our main lower bound for the class of s-sparse distributions is the following:

Proposition 1. Let n, d ⩾ 2. For any 1 ⩽ s ⩽ min(n, d/55) and any estimator P̂n =
Φ(X1, . . . , Xn), there exists a distribution P ∈ Ps,d such that

PP

(
KL(P, P̂n) ⩾

s log(ed/s)

300n

)
⩾ 1− 3 exp

(
− s

35

)
. (24)

We refer to Section 7.3 for the proof of Proposition 1. In particular, letting s = ⌊d/55⌋ in
Proposition 1 shows the following: for any n ⩾ d ⩾ 110 and any estimator P̂n = Φ(X1, . . . , Xn),
there exists a distribution P ∈ Pd such that

PP

(
KL(P, P̂n) ⩾

d

4600n

)
⩾ 1− 3 exp

(
− d

3000

)
. (25)

Two aspects of the lower bound of Proposition 1 merit further discussion.
First, the minimax lower bound is of order s log(ed/s)/n, which exceeds by a log(ed/s) factor

the rate of estimation of a distribution P with known support of size s. This extra factor, which
is standard in the context of estimation under sparsity, can be seen as the price of estimation
of the support of P : indeed, one has s log(ed/s) ≍ log

(
d
s

)
, where

(
d
s

)
is the number of possible

supports of size s. We note that the rate of s log(ed/s)/n coincides with the minimax rate of
estimation of a sparse vector under Gaussian noise (e.g., [Wai19, p. 156]).

However, despite the similarity in rates, there are qualitative differences between the Gaus-
sian setting and the multinomial setting that we consider. Indeed, it follows from the results of
Agrawal [Agr22] (see Lemma 4 below) that when P ∈ Ps,d, the empirical distribution achieves
an upper bound in squared Hellinger distance of order s/n with probability at least 1 − e−s.
This rate no longer features the extra log(ed/s) factor; by contrast, the extra log(ed/s) factor
does appear in the Gaussian model, even when the error is measured in squared Hellinger dis-
tance. Roughly speaking, this difference stems from the fact that in the multinomial model,
unlike in the Gaussian model, the amount of “noise” in a coordinate j = 1, . . . , d decays when
the magnitude of the corresponding coefficient parameter pj goes to 0.

In particular, the optimal rate of estimation of sparse discrete distributions in Kullback-
Leibler divergence exceeds the optimal rate under squared Hellinger divergence by a log(ed/s)
factor. This gap comes from the fact that the empirical distribution only identifies a subset of
the support of the true distribution, and the price of missing part of the support of P is higher
in Kullback-Leibler divergence than in squared Hellinger distance.

A second important feature of the lower bound of Proposition 1 (and of its consequence (25)
in the non-sparse case) is that it holds with high probability. Such a statement is stronger than
minimax lower bounds that are usually found in the literature, which hold either in expectation
or with constant probability. For estimation of non-sparse discrete distributions, lower bounds
in expectation are proven in [HJW15, KOPS15], while [CKT24] obtains a lower bound with
constant probability. To appreciate the difference, consider the d/n lower bound in the non-
sparse case. Then, a d/n lower bound in expectation is in principle compatible with the following
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behavior: a risk of 1 with probability d/n, and a risk of 0 ≪ d/n with high probability 1−d/n. In
contrast, a stronger lower bound with constant probability rules out such a behavior: it asserts
that a lower bound of order d/n must hold with probability bounded away from 0, say 10% or
80%. However, even this lower bound does not rule out the possibility that the estimator achieves
an error significantly smaller than d/n (say, of 0) with nontrivial probability—respectively, with
probability 90% or 20%. A high-probability lower bound such as (25) excludes such a behavior:
it asserts that a lower bound of order d/n holds with overwhelming probability, effectively ruling
out the possibility that the estimator “gets lucky”. In addition, the probability with which the
lower bound (25) holds, which behaves as 1−e−d/c, is best possible, as shown by the convergence
of the properly scaled risk of the MLE to a χ2

d−1 distribution as n→ ∞.
Proposition 1 is, to our knowledge, the first minimax lower bound that holds with probability

exponentially close to 1. We believe that such lower bounds could be of broader interest in
statistical estimation, beyond the present context of estimation of discrete distributions.

We note that the classical method for proving lower bounds in statistical estimation (put
forward by Ibragimov and Has’minskii [IH81], see [Tsy09, Chapter 2] and [Wai19, Chapter 15]),
which consists in a reduction from estimation to testing, followed by a lower bound for test-
ing though Fano’s inequality, actually provides a high-probability lower bound. However, the
probability estimate that the commonly used version of this inequality (see e.g. [Wai19, Propo-
sition 5.12 p. 502]) leads to is weaker than (25). Specifically, it leads to a lower bound that
holds with probability 1− c/d for some constant c, in contrast with the lower bound (25) with
probability 1−e−d/c. As it turns out, in the non-sparse case, one could also obtain a probability
of 1− e−d/c by instead using the sharp version of Fano’s inequality (e.g., [Tsy09, Lemma 2.10])
and further simplifying the resulting bound. However, the reduction from estimation to testing
is not straightforward in the sparse case, essentially because the Kullback-Leibler divergence
does not behave like a distance over sparse distributions with distinct supports.

The proof of Proposition 1, which can be found in Section 7.3, is not based on a reduction
to testing, but instead on the probabilistic method—in other words, on a Bayesian lower bound.
Specifically, we consider suitable distributions with randomly chosen support of size s, and show
that on average over the random draw of such a distribution, the probability that any estimator
achieves a risk at least of order s log(ed/s)/n is overwhelmingly close to 1.

In addition to the high-probability lower bound of Proposition 1, we now provide a low-
probability lower bound. Low-probability lower bounds (such as Theorems 2 and 4 in previous
sections) are more common in the literature; their interest stems from the fact that they are
precisely the converse of high-probability upper bounds, and can thus attest to the optimality of
such upper bounds. Specifically, combining Proposition 1 with Lemma 1 above—which applies
to our present setting as it involves 2-sparse distributions—leads to the following:

Corollary 1. Let n, d ⩾ 110, s ∈ {2, . . . ,min(n, d/55)} and δ ∈ (e−n, e−2). For any estimator
Φ = Φs,δ : [d]

n → Pd, there exists a distribution P ∈ Ps,d such that, letting P̂n = Φ(X1, . . . , Xn),
we have

PP

(
KL(P, P̂n) ⩾

s log(ed/s) + log(d) log(1/δ)

320n

)
⩾ δ . (26)

We refer to Section 7.4 for the proof of this result. Corollary 1 recovers the minimax lower
bound of Theorem 4 up to constants, by setting s = ⌊d/55⌋.

4.2 Upper bounds for adaptive estimators

Having obtained in Corollary 1 a lower bound on the best possible high-probability guarantee,
we now turn to upper bounds. Of particular interest are estimators that achieve such guarantees
without prior knowledge of the support size s of P ; we call such estimators adaptive.
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4.2.1 Effective sparsity parameters

Before stating such guarantees, it is worth discussing what an ideal upper bound might look
like. Of course, a natural objective would be to obtain minimax high-probability upper bounds
under sparsity constraints that match the lower bound of Corollary 1. However, it should be
noted that the notion of sparsity (support size) we considered in the previous section is rather
restrictive: it excludes distributions with full support, but for which only a small number of
classes have significant probability. Intuitively, classes with positive but very small probability
should have a limited effect on the estimation error, at least for moderate sample sizes.

These considerations call for identifying notions of “effective support size” or “effective spar-
sity” that capture the hardness of estimation more accurately than the number of nonzero entries
of the distribution. One should expect such notions of effective support size to depend on the
sample size n, given that the large-sample asymptotic behavior (3) of the MLE is governed by
the number of nonzero entries.

Perhaps the most natural notion of “effective support size of P under sample size n” is the
typical number of distinct classes that would appear on an i.i.d. sample of size n from P . As we
will explain briefly, this leads to the following definition:

Definition 1. For any distribution P = (p1, . . . , pd) ∈ Pd and n ⩾ 1, the effective support size
of P at sample size n is the quantity sn(P ) ∈ [1,min(n, d)] defined by

sn(P ) =
d∑

j=1

min(npj , 1) =
∣∣{1 ⩽ j ⩽ d : pj ⩾ 1/n

}∣∣+ ∑
j : pj<1/n

npj . (27)

It is clear from the first expression that sn(P ) increases with n while sn(P )/n decreases
with n, that s1(P ) = 1, that sn(P ) ⩽ s if P ∈ Ps,d, and that sn(P ) converges as n → ∞ to
s∞(P ) = |{1 ⩽ j ⩽ d : pj > 0}|. Now, denote by Dn the number of distinct classes in the
sample X1, . . . , Xn, namely

Dn =
d∑

j=1

1(Nj ⩾ 1) =
∣∣{Xi : 1 ⩽ i ⩽ n

}∣∣ . (28)

The following fact relates EP [Dn] to sn(P ).

Fact 1. For any P ∈ Pd and n ⩾ 1, one has (1− e−1)sn(P ) ⩽ EP [Dn] ⩽ sn(P ).

Proof. The upper bound comes from the fact that EP [Dn] =
∑d

j=1 P(Nj = 1) and that P(Nj =
1) = P(

⋃n
i=1{Xi = j}) ⩽ min(npj , 1) by a union bound. For the lower bound, we start with the

expression EP [Dn] =
∑d

j=1{1− (1−pj)n}. Now, if pj ⩾ 1/n, then (1−pj)n ⩽ (1−1/n)n ⩽ e−1,
hence 1 − (1 − pj)

n ⩾ 1 − e−1. On the other hand, if pj ⩽ 1/n, then (1 − pj)
n ⩽ e−npj ⩽

1− (1− e−1)npj by convexity of exp, so that 1− (1− pj)
n ⩾ (1− e−1)npj .

One reason why the quantity sn(P ) is a natural “effective sparsity” parameter is that it con-
trols the error of the empirical distribution in squared Hellinger distance, as shown by Lemma 4
below. To see how it arises here, recall that for an estimator P̂n = (p̂1, . . . , P̂d), one has

KL(P, P̂n) =

d∑
j=1

D(pj , p̂j) .

Now, consider the situation in which for each class j = 1, . . . , d, we are given two options:
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• estimate pj based on the binomial Nj , for instance using the empirical frequency or the
binary Laplace estimate (Nj + 1)/(n+ 2). By (5), the latter gives E[D(pj , p̂j)] ≲ 1/n;

• alternatively, resort to an “oracle” that returns an approximation p̃j of pj guaranteed to
be of the same order of magnitude: pj/2 ⩽ p̃j ⩽ 2pj . This ensures that D(pj , p̃j) ≲ pj .

Using the best of the two options for each coordinate leads to an error in relative entropy of
order at most

∑d
j=1min(pj , 1/n) = sn(P )/n. However, one cannot expect a bound of sn(P )/n

to be achievable without the oracle, as this would violate the lower bound of Corollary 1. This
is because a class j with small probability pj ≪ 1/n typically does not appear in the sample; in
this case, one has no information about the order of magnitude of pj except that pj ≲ 1/n. This
obstruction corresponds to the difficulty of estimating the support of P discussed in Section 4.1,
which leads to an extra log(ed/s) factor.

In light of this discussion, a natural objective would be to aim for a high-probability upper
bound matching the lower bound (26), but with the support size s possibly replaced by the
effective support size sn(P ).

An in-expectation version of such a result was established by Falahatgar, Ohannessian, Orlit-
sky and Pichapati [FOOP17, Theorem 1], who showed that the “absolute discounting” estimator
P̂n satisfies the following guarantee: for any P ∈ Pd, denoting sn = sn(P ) one has

EP [KL(P, P̂n)] ⩽ c · sn log(ed/sn)
n

(29)

for some constant c that only depends on the tuning parameter of the estimator.
Before establishing a high-probability extension of this result, we first show that an improve-

ment of the bound (29) is possible even in expectation. To see why, consider a distribution
P ∈ Pd with support size s ≪ d, and consider the asymptotic regime where n → ∞. In this
case, it follows from (3) that as n → ∞, the MLE Pn achieves a risk of order s/n with high
probability. On the other hand, again as n → ∞, one has sn → s, hence the bound (29) scales
as s log(ed/s)/n, which exceeds the risk of the MLE by a log(ed/s) factor.

To understand this discrepancy, recall that the log(ed/s) factor comes from the fact that
the support of P is unknown. Meanwhile, sn(P ) measures the typical number of distinct classes
that appear in the sample. But since classes that appear in the sample are known, they do
not contribute to the uncertainty about the support of P . In contrast, the only classes that
contribute to the uncertainty on the support are those that are missing from the sample2.

Hence, one should expect that the effective support size sn(P ) does not suffice to describe
the achievable error rate in relative entropy. Instead, the logarithmic term owing to the lack of
knowledge of the support should be tied to a different sparsity parameter, which accounts for
the contribution of classes that are missing from the sample. We now define such a parameter:

Definition 2. For any distribution P = (p1, . . . , pd) ∈ Pd and real number n ⩾ 1, the effective
missing support size of P at sample size n is the quantity s◦n(P ) ∈ (0,min(n, d)] defined by

s◦n(P ) =

d∑
j=1

min
(
e1−npj , npj

)
=

∑
j : pj⩾1/n

e1−npj +
∑

j : pj<1/n

npj . (30)

The reason why s◦n(P ) accounts for the contribution of missing classes is that s◦n(P )/n is
closely related to the expected “missing mass” (total probability of classes that do not appear
in the sample), as shown in Lemma 2 below. We defer to Section 5 for more discussion on the

2To be accurate, the situation is slightly more subtle: classes that do appear, but with an empirical frequency
significantly smaller than their theoretical one, also contribute to the inflation of the relative entropy.
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behavior of the missing mass. In addition, again by Lemma 2, s◦n(P ) is also closely related to
the expected number of new classes that would appear on an independent sample Xn+1, . . . , X2n

of size n (but not in X1, . . . , Xn), namely EP [D2n −Dn]; this justifies the terminology “effective
missing support size” of Definition 2. This suggests that s◦n(P ) (roughly the number of classes
that first appear after ≍ n observations) can be seen as a “local” counterpart to the “global”
effective sparsity parameter sn(P ) (number of classes that first appear after ≲ n observations).

It is clear from the second expression in (30) that s◦n(P ) ⩽ sn(P ). In addition, from the first
expression, the quantity s◦n(P )/n decreases with n. On the other hand, contrary to sn(P ), the
quantity s◦n(P ) does not increase with n; in fact, one has s◦n(P ) → 0 as n→ ∞ for any P ∈ Pd.

To appreciate the difference between the two effective support size parameters, one may use
the following rough approximations: sn(P ) usually amounts to the number of classes j such that
pj ≳ 1/n, while s◦n(P ) often roughly corresponds to the number of classes j with pj ≍ 1/n.

4.2.2 Upper bound in expectation for sparse distributions

As discussed above, the contribution to the estimation error of classes that appear in the sample
(with an empirical frequency of the same order as their true frequency) should ideally scale
as sn(P )/n, without additional logarithmic factors. On the other hand, the contribution to
the estimation error of classes that do not appear in the sample (or appear with an empirical
frequency significantly smaller than their true frequency) is governed by the parameter s◦n =
s◦n(P ). To anticipate their contribution, consider the situation where s◦n indeed scales as the
number of classes j such that pj ≍ 1/n. Such classes have a constant probability of not appearing
in the sample, in which case their identity is unknown. Thus, there are typically about s◦n missing
classes that have a probability of order 1/n. However, assuming that the total number of missing
classes is of order d (which occurs for instance in the high-dimensional regime d ⩾ 2n), the total
mass of missing classes, of order s◦n/n, must be shared among roughly d classes. This means
each of the roughly s◦n classes j with pj ≍ 1/n is assigned a probability p̂j ≍ (s◦n(P )/n)/d ≲ 1/n,
leading to a total contribution to the estimation error of order s◦n× 1

n log
( 1/n
s◦n/(dn)

)
≍ s◦n

n log(d/s◦n).
The next result (proved in Section 9) shows that a matching upper bound can indeed be

achieved by a suitable adaptive estimator:

Proposition 2. Let P̂ ad
n = (p̂1, . . . , p̂d) denote the estimator defined by, for j = 1, . . . , d,

p̂j =
Nj + λ̂

n+ λ̂d
with λ̂ =

Dn

d
, (31)

where Dn =
∑d

j=1 1(Nj ⩾ 1) is the number of distinct classes among X1, . . . , Xn. Then, for any
n, d ⩾ 2 and distribution P ∈ Pd, letting sn = sn(P ) and s◦n/2 = s◦n/2(P ) one has

EP

[
KL(P, P̂ ad

n )
]
⩽

2.4sn + 2s◦n/2 log(ed/s
◦
n/2)

n+ 1
. (32)

The estimator P̂ ad
n defined by (31) can be viewed as an adaptive modification of the Laplace

estimator (4), where the regularization parameter λ̂ is chosen in a data-dependent manner, so
as to adapt to the “shape” of the distribution P . In the case where n ≳ d and the distribution is
“dense”, namely puts significant probability pj ≳ 1/d to all classes, then typically Dn is of order
d and thus λ̂ ≍ 1, hence the estimator behaves similarly to the Laplace estimator. On the other
hand, when the distribution is highly sparse, then typically Dn ≪ d and thus the regularization
parameter λ̂ ≪ 1 is much smaller than for the Laplace estimator—it may be as low as 1/d,
in the extreme case where only one class appears in the sample. The specific choice of tuning
parameter λ̂ = Dn/d is motivated by the decomposition of the risk in Lemma 3 below.
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To the best of our knowledge, the estimator P̂ ad
n defined by (31) is new. However, it is

related to existing estimators from the literature. First, it bears some relation with absolute
discounting [NEK94, KN95], a core component in the Kneser-Ney smoothing method which has
long been favored in natural language processing [KN95, CG99] and whose performance has been
analyzed in [OD12, FOOP17]; see also [Teh06] for a justification of this method in the case of
polynomially decaying class frequencies. Specifically, absolute discounting consists in removing a
constant η ∈ (0, 1) to the count Nj ⩾ 1 of all classes j = 1, . . . , d that appear in the sample, and
sharing the freed mass among missing classes. When Dn ⩽ d/2, absolute discounting and the
estimator P̂ ad

n both assign a probability p̂j ≍ Dn/(dn) to missing classes j; on the other hand,
the corrections of these two estimators for classes j with Nj ≫ 1 differ. Second, in an online
setting where observations accrue one by one, Hutter [Hut13] proposed a sequential prediction
method using a regularization λ̂t ≍ Dt/{d log[et/Dt]} after t observations, and shows that it
satisfies regret guarantees in sparse situations. This method is related to the estimator P̂ ad

n , the
main difference being a logarithmic factor in the regularization parameter. We also note that
guarantees in the sequential setting necessarily feature an additional log n factor compared to
the fixed-sample size setting, due to the contribution of small sample sizes.

Since s◦n/2 ⩽ sn/2 ⩽ sn, Proposition 2 matches the upper bound (29) from [FOOP17] for the
absolute discounting estimator. In addition, it improves this bound when s◦n/2 ≪ sn.

Remark 1 (Comparison between sn and s◦n). In order to quantitatively appreciate similarities
and differences between the two effective sample sizes, it helps to consider the following stylized
situations. Let P = (p1, . . . , pd), and assume (up to relabeling classes) that p1 ⩾ . . . ⩾ pd.

(a) Polynomial decay : first, assume that pj ≍ j−α for some constant α > 1, and that d≫ n1/α.
In this case, one has sn ≍ s◦n ≍ n1/α up to constants that may depend on α. Hence, the
two effective sample size parameters are equivalent, and so are the bounds (29) and (32).

(b) Geometric decay : assume now that c1e−C1j ⩽ pj ⩽ C2e
−c2j for every j = 1, . . . , d for some

constants c1, c2, C1, C2 > 0. If d ⩾ C log n for some large enough constant C (depending
on the previous constants ck, Ck), then sn ≍ log n while s◦n ≍ 1. In particular, if d scales
polynomially in n, then the bound (29) scales as log2(n)/n, while the bound (32) scales
as log(n)/n.

(c) Sparse distributions: finally, assume that P is supported on s ⩽ d classes, and that the
frequencies of these classes are lower-bounded; namely, pj ⩾ c/s for j = 1, . . . , s for some
c ∈ (0, 1), while pj = 0 for s < j ⩽ d. Then, for n ⩾ 2s log(es)/c, one has sn = s while
s◦n ⩽ s◦n/2 ⩽ ese−cn/(2s) ⩽ 1, hence s◦n ≪ sn if s ≫ 1. Thus if dε ⩽ s ⩽ d1−ε for some
ε ∈ (0, 1), ignoring the dependence on c, ε, the bound (29) scales as s log(d)/n, while the
bound (32) scales as s/n, removing a log d factor.

We note that the bound of Proposition 2 holds in expectation, while the focus of the present
work is on high-probability guarantees. High-probability extensions will be proved in what fol-
lows, but we have nonetheless included Proposition 2 for two reasons. First, this bound features
small numerical constants. Second and more importantly, the proof of Proposition 2 is self-
contained and significantly simpler than that of the high-probability bounds. Specifically, this
proof relies on a combination of exchangeability and leave-one-out arguments. Such arguments
already appear in the proof of the bound (5) for the Laplace estimator (see [Cat97, MG22]),
although the proof of Proposition 2 requires somewhat more careful counting and conditioning.
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4.2.3 High-probability upper bounds for sparse distributions

We now turn to the strongest positive guarantees in this work, namely high-probability upper
bounds for the estimator P̂ ad

n and its confidence-dependent version P̂ ad
n,δ, defined below. These

results can be seen as sparsity-adaptive extensions of Theorems 1 and 3, respectively.

Theorem 5. Let n ⩾ 12, d ⩾ 3, δ ∈ (e−n/6, e−2) and P ∈ Pd, and denote sn = sn(P ) and
s◦n = s◦n(P ). The add-λ̂ estimator P̂ ad

n = (p̂1, . . . , p̂d) given by

p̂j =
Nj + λ̂

n+ λ̂d
(33)

with λ̂ = Dn/d, where D̂n =
∑d

j=1 1(Nj ⩾ 1) is the number of distinct classes that appear in the
sample X1, . . . , Xn, satisfies the following guarantee: with probability at least 1− 14δ under P ,

KL(P, P̂ ad
n ) ⩽ 121000

sn + s◦n/112 log(ed/sn) + max{log d, log log(1/δ)} log(1/δ)
n

. (34)

In addition, letting λ̂δ = max{Dn, log(1/δ)}/d, the add-λ̂δ estimator P̂ ad
n,δ satisfies the following

guarantee: with probability at least 1− 14δ under P ,

KL(P, P̂ ad
n,δ) ⩽ 121000

sn + s◦n/112 log(ed/sn) + log(d) log(1/δ)

n
. (35)

The proof of Theorem 5 is provided in Section 6.6. This proof relies on a combination of
lemmata already used in the analysis of the Laplace estimator, together with additional results
on the “underestimated mass” described in Section 5 below. We now comment on Theorem 5.

First, since s◦n/112 ⩽ sn/112 ⩽ sn ⩽ d, using that s 7→ s log(ed/s) is increasing on [0, d] and re-

calling inequality (21), Theorem 5 shows that the confidence-independent estimator P̂ ad
n achieves

the best possible uniform high-probability guarantee over Pd among confidence-independent es-
timators, while the confidence-dependent estimator P̂ ad

n,δ achieves the minimax high-probability
guarantee over Pd. These results match the lower bounds of previous sections and the guarantees
for the Laplace estimator and its confident-dependent modification.

Second, for any s ∈ {2, . . . , d} and P ∈ Ps,d one has s◦n/112 ⩽ sn ⩽ s; hence, Theorem 5 im-

plies that the estimator P̂ ad
n,δ achieves an upper bound of order {s log(ed/s)+ log(d) log(1/δ)}/n

over Ps,d. This matches the minimax lower bound over Ps,d of Corollary 1, and thus com-
pletes the characterization of the minimax high-probability rate over this class. In addition, the
estimator P̂ ad

n,δ achieves this rate simultaneously for all sparsity levels s ∈ {2, . . . , d}.
Finally, the guarantees of Theorem 5 mainly dependent on the intrinsic and distribution-

dependent parameters s = sn(P ) and s◦ = s◦n/112(P ), with only a (necessary) logarithmic
dependence on the total number d of classes. They may therefore be viewed as essentially
“non-parametric”. Note that since s◦ ⩽ s, the term s◦ log(ed/s) in (34) and (35) may be
bounded by s◦ log(ed/s◦); this matches the corresponding term in the in-expectation bound of
Proposition 2, up to constant factors in the error bound and sample size. In fact, the complexity
term in Theorem 5 may appear to be of a smaller order of magnitude than that of Proposition 2
when s◦ ≪ s. This is not the case, since one also has s + s◦ log(ed/s◦) ≲ s + s◦ log(ed/s)

(indeed, either s◦ log(ed/s◦) ⩽ s and the bound holds, or otherwise ed/s◦

log(ed/s◦) < ed/s and thus
log(ed/s◦) ≲ log(ed/s) hence the bound also holds).

18



Consequences for the sample complexity. While we have stated our results in terms of
error rates, one may also formulate them in terms of the sample complexity, which is the sample
size n required to achieve an error in relative entropy of ε with probability at least 1− δ.

For instance, the results of Section 3 (Theorems 3 and 4) imply that for d ⩾ 5000, 0 < δ < e−2

and 0 < ε < 1, a sample size of

n ≳ Nmax(d, ε, δ) =
d+ log(d) log(1/δ)

ε

is both necessary and sufficient for the existence of an estimator P̂n = Φ(X1, . . . , Xn) such that
PP (KL(P, P̂n) ⩽ ε) ⩾ 1− δ for every P ∈ Pd.

It is also instructive to formulate the distribution-dependent upper bound (35) for the adap-
tive and confidence-dependent estimator P̂ ad

n,δ in this way. For any dimension d ⩾ 2, accuracy
ε ∈ (0, 1), failure probability δ ∈ (0, e−2) and distribution P ∈ Pd, define the following “critical
sample sizes”:

Nobs(P, ε) = inf

{
n ⩾ 1 :

sn(P )

n
⩽ ε

}
, (36)

Nmiss(P, d, ε) = inf

{
n ⩾ 1 :

s◦n(P )

n
⩽

ε

log(ed/εn)

}
, (37)

Ndev(d, ε, δ) =
log(d) log(1/δ)

ε
. (38)

Note that for n ⩾ Nobs(P, ε) (resp. n ⩾ Nmiss(P, d, ε)), one has sn(P )/n ⩽ ε (resp. s◦n(P )/n ⩽
ε/ log(ed/εn)) since sn(P )/n (resp. s◦n(P )/n and log(ed/εn)) is non-increasing in n, as noted
above. The sample sizes (36) and (38) serve to control the first and third term in the error
bound (35). In addition, up to constant factors, the second sample size allows one to control
the second term in the bound (35). Indeed, bounding sn ⩾ s◦n/112, the second term is at most
of order s◦n/112 log(ed/s

◦
n/112)/n. In addition, up to replacing n by 112n, for this term to be

bounded by Cε for some absolute constant C > 1, it suffices that (recalling that s◦n ⩽ d)

s◦n log(ed/s
◦
n)

n
≲ ε i.e.

d/s◦n
log(ed/s◦n)

≳
d

εn
i.e.

d

s◦n
≳

d

εn
log

( ed
εn

)
,

which amounts to the condition in (37).
The upper bound (35) from Theorem 5, together with the previous discussion, implies the

following: for some absolute constants c1, c2 ⩾ 1 (one may take c1 = 112), if

n ⩾ c1max
{
Nobs(P, ε), Nmiss(P, d, ε), Ndev(d, ε, δ)

}
, (39)

then the estimator P̂ ad
n,δ satisfies

PP

(
KL(P, P̂ ad

n,δ) ⩾ c2 ε
)
⩽ δ . (40)

5 High-probability bound on the missing mass

In this section, we present a result that plays an important role in the proof of Theorem 5, namely
in the high-probability analysis of adaptive estimators, but which may also be of independent
interest.

Specifically, the following quantities appear naturally in our analysis and in other contexts:
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Definition 3 (Missing and underestimated masses). Given a distribution P and an i.i.d. sample
X1, . . . , Xn from P , we define the missing mass Mn =

∑d
j=1 pj1(Nj = 0) as the total mass under

P of classes that do not appear in the sample.
We also define the underestimated mass Un =

∑d
j=1 pj1(Nj ⩽ npj/4) as the total mass of

classes whose empirical frequency underestimates their true probability by at least a factor of 4.

The missing and underestimated masses depend on both the sample X1, . . . , Xn and on the
true distribution; as such, they are not “observable” from the data.

It is clear from the definition that Mn ⩽ Un. As it happens, the quantity that plays a role
in our analysis is the underestimated mass Un, and thus our main goal is to provide a high-
probability upper bound on Un. On the other hand, the missing mass Mn is a classical quantity,
which has been studied in Statistics since the work of Good [Goo53], and our bound on Un will
also yield a new high-probability upper bound on Mn.

Specifically, our aim is to address the following question:

For a given ε > 0 and δ ∈ (0, e−1) and a distribution P ∈ Pd, how large must the
sample size n be to ensure that the underestimated mass Un (and thus the missing
mass Mn) is smaller than ε with probability at least 1− δ?

Before stating our main result, we first clarify that the behavior of the expected missing
mass is essentially governed by the behavior of the parameter s◦n(P ) (Definition 2), a fact we
alluded to in Section 4.

Lemma 2. For P ∈ Pd, let s•n(P ) =
∑d

j=1(npj)e
−npj for n ∈ (0,+∞), and recall the definitions

of s◦n(P ) and Mn (Definitions 2 and 3). For any integer n ⩾ 1, the following holds:

1. EP [Mn] =
∑d

j=1 pj(1− pj)
n;

2. s•2n(P )/(2n)− e−0.3n ⩽ EP [Mn] ⩽ s•n(P )/n;

3. e−1s◦n(P ) ⩽ s•n(P ) ⩽ 2s◦n/2(P ).

4. For n ⩾ 3, letting s⋄n(P ) = EP [D2n −Dn], one has s◦2n(P )/12− e−n ⩽ s⋄n(P ) ⩽ s◦n(P ).

In short, the quantities nEP [Mn], s
•
n(P ), s

◦
n(P ) are essentially equivalent, up to constant

factors in their values and in the sample size n, and possibly additive exponentially small terms.

Proof of Lemma 2. For the first identity, write EP [Mn] =
∑d

j=1 pjPP (Nj = 0) =
∑d

j=1 pj(1 −
pj)

n. The upper bound EP [Mn] ⩽ s•n(P )/n comes from the fact that (1− pj)
n ⩽ e−npj .

For the lower bound, given λ ∈ R+ let N(λ) ∼ Poisson(λ), and set N (λ)
j =

∑
1⩽i⩽N(λ) 1(Xi =

j) and M (λ) =MN(λ) =
∑d

j=1 pj1(N
(λ)
j = 0). It is a classical fact (e.g., this follows from [MU17,

Theorem 5.6 p. 100] and the convolution property of Poisson distribution) thatN (λ)
j ∼ Poisson(λpj).

Thus E[M (λ)] =
∑d

j=1 pjP(N
(λ)
j = 0) =

∑d
j=1 pje

−λpj = s•λ(P )/λ. Clearly, if N(2n) ⩾ n then
M (2n) ⩽Mn. On the other hand, if N(2n) < n we may write Mn ⩾ 0 ⩾M (2n) − 1. Hence,

nEP [Mn] ⩾ nEP [M
(2n) − 1(N(2n) < n)] = n× s•2n(P )

2n
− nP(N(2n) < n) ,

and the desired claim follows from the bound P(N(2n) < n) ⩽ exp(−D(n, 2n)) ⩽ e−(1−log 2)n ⩽
e−0.3n by Lemma 17.

For the third point, we apply the bounds (npj)e−npj ⩽ npj and (npj)e
−npj = 2(npj/2)e

−npj ⩽
2e−1+npj/2e−npj ⩽ e1−npj/2 to get the upper bound. To get the lower bound, we use that npj ⩾ 1
when pj ⩾ 1/n, and e−npj ⩾ e−1 when pj < 1/n.
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Finally, for the fourth point, write

s⋄n(P ) = EP [D2n −Dn] =
d∑

j=1

{
(1− pj)

n − (1− pj)
2n
}
=

d∑
j=1

(1− pj)
n
{
1− (1− pj)

n
}
.

The upper bound s⋄n(P ) ⩽ s◦n(P ) follows from the bounds (1− pj)n ⩽ e−npj and 1− (1− pj)n ⩽
min(1, npj). For the lower bound, consider first indices j for which npj ⩽ 1. In this case, one has
1− (1−pj)n ⩾ (1−e−1)npj (see the proof of Fact 1) while (1−pj)n ⩾ (1−1/n)n ⩾ (2/3)3, thus
(1−pj)n{1− (1−pj)n} ⩾ (2/3)3(1− e−1)npj ⩾ npj/6 ⩾ min(2npj , e

1−2npj )/12. When npj > 1,
one has 1 − (1 − pj)

n > 1 − (1 − 1/n)n ⩾ 1 − e−1, while (1 − pj)
n ⩾ e−2npj − e−n1(pj > 3/4)

as 1 − p > e−2p for p ∈ [0, 3/4]; thus (1 − pj)
n{1 − (1 − pj)

n} ⩾ (1 − e−1)e−2npj − e−n1(pj >
3/4) ⩾ min(2npj , e

1−2npj )/12− e−n1(pj > 3/4). Combining the previous inequalities and using
that there is at most one index j such that pj > 3/4 concludes the proof.

In particular, the inequalities of Lemma 2 imply that:

s◦2n(P )

2en
− e−0.3n ⩽ EP [Mn] ⩽

2s◦n/2(P )

n
. (41)

(In addition, the e−0.3n term can often be ignored: for instance, it is dominated by the first term
for large n whenever there is a class j with pj ⩽ 0.1, which occurs whenever at least 10 classes
have nonzero probability.) Hence, ignoring the e−0.3n term, the behavior of the typical value
EP [Mn] of the missing mass is essentially equivalent to that of s◦n(P )/n.

Theorem 6 below provides a deviation upper bound on the underestimated and missing
masses, involving the same complexity parameter as the in-expectation estimates (41):

Theorem 6. For any n, d ⩾ 2, δ ∈ (0, e−1) and any P ∈ Pd, with probability at least 1 − 8δ
under P one has

Mn ⩽ Un ⩽
336 s◦n/112(P ) + 2500e log(1/δ)

n
. (42)

The proof of Theorem 6 is provided in Section 8. Roughly speaking, the proof relies on a
careful control of the contribution to Un of classes pj of each order of magnitude, followed by a
combination of these per-scale contributions.

As we argue now, Theorem 6 constitutes an almost optimal high-probability upper bound
on the missing mass, up to constant factors in the mass and sample size. Indeed, combining (41)
and Theorem 6 shows that for every δ ∈ (0, e−1), with probability at least 1− δ,

Mn ⩽ Un ⩽ 3eEP [Mn/224] + 2600e
log(1/δ)

n
. (43)

(Specifically, from (41) we obtain an additive term in 3e1−0.15n ⩽ 20e log(1/δ)/n.) In addition,
as will be discussed below, the deviation term in log(1/δ)/n is necessary, except in situations
where the probabilities in P exhibit a significant gap; and in this case, the bound of Theorem 6
admits a simple strengthening that addresses its sub-optimality.

Critical sample size. Thanks to Theorem 6, we can address the question of the critical
sample size for which the missing mass is small with high probability. Specifically, for P ∈ Pd

and ε ∈ (0, 1), define

N◦(P, ε) = inf

{
n ⩾ 1 :

s◦n(P )

n
⩽ ε

}
. (44)
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Note that s◦n(P )/n ⩽ ε for n ⩾ N◦(P, ε) as s◦n(P )/n is non-increasing in n. Then, it follows
from Theorem 6 that for any δ ∈ (0, e−1), if

n ⩾ 2500max
{
N◦(P, ε),

log(1/δ)

ε

}
, (45)

then PP (Mn ⩾ 6ε) ⩽ δ. Below, we show that the estimate (45) is optimal in many situations,
and that a simple tightening is optimal in the general case. We finally compare our condition
with those derived from previous upper bounds on the missing mass in the literature.

Necessity of the complexity parameter. We first argue that the condition n ≳ N◦(P, ε)
is almost necessary for the missing mass to be small in expectation. Indeed, the latter condition
amounts to

n ⩾ Nexp(P, ε) = inf
{
n ⩾ 1 : EP [Mn] ⩽ ε

}
. (46)

But by inequality (41), one has for some absolute constant c > 1:

N◦(P, c ε) ⩽ cNexp(P, ε) + c log
(1
ε

)
, (47)

hence whenever log(1/ε) ≪ N◦(P, ε) (which as discussed above occurs in most situations
of interest) the condition n ≳ N◦(P, ε) is necessary. Besides, whenever the second term
log(1/δ)/ε ⩾ log(1/ε) in (45) is necessary, so is log(1/ε) and thus N◦(P, ε).

In fact, it follows from inequality (43) that PP (Un ⩾ 4eε) ⩽ δ whenever

n ⩾ 2600max

{
Nexp(P, ε),

log(1/δ)

ε

}
. (48)

Deviation term and refinement. We now address the question of whether the condition
n ≳ log(1/δ)/ε is necessary. As it turns out, this is often but not always the case; however,
a simple strengthening of this result does provide a necessary condition. In order to state this
refinement, define the set of all sums of class probabilities in P :

S(P ) =
{
pJ =

∑
j∈J

pj : J ⊂ [d]

}
⊂ [0, 1] . (49)

It is clear that Un,Mn ∈ S(P ). Hence, in order to ensure that Mn < ε, it suffices that Mn < ε,
where we let

ε = ε(P, ε) = inf
(
S(P ) ∩ [ε, 1]

)
. (50)

(Equivalently, if Mn ⩽ t then Mn ⩽ b(P, t) = sup
(
S(P ) ∩ [0, t]

)
, which strengthens the bound

of Theorem 6.) Hence, condition (45) ensures that PP (Mn ⩾ 6ε) ⩽ δ whenever

n ⩾ 15000max
{
N◦(P, ε),

log(1/δ)

ε(P, ε)

}
. (51)

Indeed, if ε ⩽ 6ε, apply (45) and bound 1/ε ⩽ 6/ε. On the other hand, if ε > 6ε, apply (45) to
ε/6 > ε, so that with probability 1− δ one has Mn < 6× ε/6 = ε, hence Mn < ε, and use that
N◦(P, ε/6) ⩽ N◦(P, ε).

We now show that the condition n ≳ log(1/δ)/ε is necessary to ensure this high-probability
bound, whenever ε is bounded away from 1. For concreteness, assume that ε ⩽ 3/4, so that
1−ε > e−2ε. Let J ⊂ [d] such that pJ =

∑
j∈J pj = ε, and let NJ =

∑
j∈J Nj =

∑n
i=1 1(Xi ∈ J).
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Clearly, if NJ = 0 then Mn ⩾ pJ = ε ⩾ ε. Hence, PP (Mn ⩾ ε) ⩾ PP (NJ = 0) = (1 − pJ)
n >

e−2εn ⩾ δ whenever n ⩽ log(1/δ)/(2ε).
Summarizing the previous discussion, we obtain up to universal constants the critical sample

size after which the missing mass is small, in expectation and with high probability (the sufficient
condition being deduced from (48) in the same way that (51) is deduced from (45)).

Corollary 2. Let ε ∈ (0, 3/4), δ ∈ (0, e−1), n ⩾ 1 and P ∈ Pd.

1. When ε(P, ε) ⩽ 3/4, if EP [Mn] ⩽ ε and PP (Mn ⩾ ε) ⩽ δ, then

n ⩾
1

2
max

{
Nexp(ε),

log(1/δ)

ε(P, ε)

}
.

2. Conversely, if

n ⩾ 11000emax

{
Nexp(P, ε),

log(1/δ)

ε(P, ε)

}
, (52)

then EP [Mn] ⩽ ε and PP (Mn ⩾ 4eε) ⩽ δ.

Since the optimal deviation term scales as log(1/δ)/ε, the deviation term log(1/δ)/ε is op-
timal unless ε≫ ε. Distributions for which this occurs can be characterized as follows:

Fact 2. Let ε ∈ (0, 1/2) and ε ⩾ 2ε. Let P = (p1, . . . , pd) ∈ Pd, with p1 ⩾ . . . ⩾ pd without loss
of generality. The following properties are equivalent:

(i) ε(P, ε) ⩾ ε;

(ii) there exists j∗ ∈ {1, . . . , d} such that pj∗ ⩾ ε while
∑

j∗<j⩽d pj < ε.

In this case, one has ε(P, ε) = pj∗.

Proof. We first prove the implication (i) ⇒ (ii). Let j∗ = max{1 ⩽ j ⩽ d : pj ⩾ ε} ∈ {0, . . . , d},
with the convention that j∗ = 0 if the set is empty.

We first show that
∑

j∗<j⩽d pj < ε. If j∗ = d, the sum equals 0 and the property holds; we
thus assume that j∗ ⩽ d−1. In this case, let j′ denote the largest integer in {j∗+1, . . . , d} such
that

∑
j∗<j⩽j′ pj < ε (by definition of j∗, this inequality holds for j′ = j∗+1, hence j′ ⩾ j∗+1).

We need to show that j′ = d. We proceed by contradiction and assume that j′ ⩽ d− 1. In this
case, one has

∑
j∗<j⩽j′ pj < ε while

∑
j∗<j⩽j′+1 pj ⩾ ε. But since

∑
j∗<j⩽j′+1 pj ∈ S(P ), this

also implies that
∑

j∗<j⩽j′+1 pj ⩾ ε ⩾ 2ε, hence pj′+1 =
∑

j∗<j⩽j′+1 pj −
∑

j∗<j⩽j′ pj > ε. But
this contradicts the fact that pj′+1 ⩽ pj∗+1 < ε, proving the claim of this paragraph.

Now since
∑

0<j∗⩽d pj = 1, the inequality
∑

j∗<j⩽d pj < ε < 1 implies that j∗ ⩾ 1. By
definition of j∗, one has pj∗ ⩾ ε; but since pj∗ ∈ S(P ), this implies that pj∗ ⩾ ε(P, ε) ⩾ ε.

We now conclude with the implication (ii) ⇒ (i). Let J ⊂ [d]. If J ⊂ {j∗ + 1, . . . , d},
then

∑
j∈J pj ⩽

∑
j∗<j⩽d pj < ε. Otherwise, J contains an element j′ ∈ {1, . . . , j∗}, hence∑

j∈J pj ⩾ pj′ ⩾ pj∗ ⩾ ε. Since the inequality
∑

j∈J pj ⩾ pj∗ is an equality for J = {j∗}, one
has ε(P, ε) = pj∗ ⩾ ε.

It follows from Fact 2 that if ε(P, ε) ≫ ε, then there exists j∗ ∈ {1, . . . , d} such that pj∗ ≫ ε

while
∑

j∗<j⩽d pj < ε. Then, either j∗ = d and pd ≫ ε, or j∗ ⩽ d−1 and
∑d

j=j∗+1 pj < ε≪ pj∗ ,
so in particular pj∗+1 ≪ pj∗ .

We note that the latter property occurs neither for polynomial decay of probabilities (as
defined in Remark 1) nor for exponential decay, for which pj+1 ≳ pj for every j < d. However,
this property does occur in the case of sparse distributions (third example of Remark 1), for
which the refinement in terms of ε(P, ε) brings an improvement.
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Previous results. The behavior of the missing mass and the question of its estimation have
been studied in a rich literature, which can be traced to the work of Good [Goo53] introducing
the Good-Turing estimate. In what follows, we focus our discussion on existing high-probability
bounds on the missing mass, and on conditions they imply on the sample size for the missing
mass to be small. We additionally refer to the discussion in [BHBO17] (and references therein)
for background and references on the distinct question of estimation of the missing mass.

First, a deviation bound due to McAllester and Schapire [MS00], with constants later im-
proved by McAllester and Ortiz [MO03] (see also Berend and Kontorovitch [BK13] for an al-
ternative approach), shows that the missing mass exhibits sub-Gaussian tails. Specifically, the
following distribution-free deviation bound holds [MO03, Theorem 16]: for any d ⩾ 2, distribu-
tion P ∈ Pd and δ ∈ (0, 1), one has

PP

(
Mn ⩾ EP [Mn] +

√
log(1/δ)

n

)
⩽ δ . (53)

This implies that for any ε ∈ (0, 1) and δ ∈ (0, e−1), if

n ⩾ max

{
Nexp(P, ε),

log(1/δ)

ε2

}
, (54)

then PP (Mn ⩾ 2ε) ⩽ δ. While significant and nontrivial, condition (54) exhibits a suboptimal
dependence on ε compared to (48), although it involves smaller numerical constants.

To the best of our knowledge, the previous best deviation bound on the missing mass is
due to Ben-Hamou, Boucheron and Ohannessian [BHBO17], tightening previous multiplicative
concentration bounds by Ohannessian and Dahleh [OD12]. Specifically, the following tail bound
follows from [BHBO17, Theorem 3.9]:

PP

(
Mn ⩾ EP [Mn] +

√
2d+n log(1/δ)

n
+

log(1/δ)

n

)
⩽ δ , (55)

where d+n = d+n (P ) =
d∑

j=1

{
1− (npj + 1)e−npj

}
≍

d∑
j=1

min
[
1, (npj)

2
]
. (56)

(Note that d+n (P ) ≍ sn(P ) whenever
∑

j : pj<1/n(npj) ≲
∑

j : pj⩾1/n 1.) Since d+n ⩽
∑d

j=1(1 −
e−npj ) ⩽

∑d
j=1(npj) = n, this bound recovers (53) up to constants in the regime of interest

δ ∈ (e−n, 1). Furthermore, as shown in [BHBO17], inequality (55) strictly improves (53) in most
situations, and in fact provides sharp results in several interesting cases.

However, there are situations in which the second term in (55) dominates and leads to a
suboptimal bound. For instance, consider the case where pj ≍ 1/d for 1 ⩽ j ⩽ d/2, while
pj ≍ 2−(j−d/2)/d for d/2 < j ⩽ d, and the regime of constant probability δ ∈ (0, 1). For
d log d≪ n≪ 2d, the typical missing mass is at most of order EP [Mn] ≍ 1/n. However, in this
regime one has d+n ≍ d, hence the bound (55) is of order

√
d/n, which is suboptimal by a

√
d

factor. This
√
d factor can be removed by resorting to Theorem 6.

6 Proof of high-probability upper bounds

In this section, we provide the proof of high-probability upper bounds for estimation in this
paper, namely Theorems 1, 3 and 5 (the proof of the last result relies in part on Theorem 6 on
the underestimated mass, which is proved in Section 8).

Specifically, we start with lemmata that are used in the proof of all high-probability upper
bounds, before concluding with the proof of each specific result.
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6.1 Risk decomposition

All estimators we consider are “add-λ” smoothing rules, where λ may be confidence-dependent
and/or data-dependent. We therefore start our analysis with the following deterministic risk
decomposition for add-λ estimators. Below, we let pj = Nj/n be empirical frequency of class
j = 1, . . . , d.

Lemma 3. Consider the distribution P̂n = (p̂1, . . . , p̂d) given by

p̂j =
Nj + λ

n+ λd
, j = 1, . . . , d , (57)

for some λ ∈ (0, n/d] that may depend on X1, . . . , Xn. Then, we have

KL(P, P̂n) ⩽ 6
d∑

j=1

(√
pj −

√
pj

)2
+

7λd

n
+

∑
j : pj⩾4λ/n

pj log
(2npj

λ

)
1
(
Nj ⩽

npj
4

)
. (58)

The decomposition (58) features three terms.
The first term, which does not depend on the estimator (that is, on λ), corresponds to the

squared Hellinger distance between the empirical distribution Pn = (p1, . . . , pd) and the true
distribution P . It constitutes a natural “hard limit” for our estimation guarantees in relative
entropy. This term is controlled in Section 6.2.

The second term accounts for the “bias” due to the use of regularization, which diminishes
the probability assigned to high-frequency classes. This term increases with the smoothing
parameter λ. Its control is immediate when λ is data-independent, and relatively straightforward
when λ is data-dependent.

The third and final term accounts for the contribution of classes whose frequency is sig-
nificantly underestimated, which inflates the relative entropy over ideal asymptotic rates. The
effect of underestimation of true frequencies is mitigated by the use of smoothing, and indeed
this term decreases with the smoothing parameter λ. The control of this term is at the core of
the analysis, and is carried out in Section 6.3.

Proof of Lemma 3. By Lemma 20, for any p, q ∈ R+, if q ⩾ p/8 thenD(p, q) ⩽ ϕ(8)(
√
p−√

q)2 ⩽
3(
√
p − √

q)2. On the other hand, if q ⩽ p/8 then D(p, q) = p log(p/q) − p + q ⩽ p log(p/q).
Hence, for any p, q ∈ R+, we have

D(p, q) ⩽ 3(
√
p−√

q)2 + p log
(p
q

)
1(q ⩽ p/8) . (59)

It follows from this inequality that

KL(P, P̂n) =
d∑

j=1

D(pj , p̂j) ⩽ 3
d∑

j=1

(√
p̂j −

√
pj

)2

+
d∑

j=1

pj log
(pj
p̂j

)
1
(
p̂j ⩽

pj
8

)
. (60)

We now bound the two terms of the right-hand side of (60), starting with the first one. First,
since p̂j = (Nj + λ)/(n+ λd) = (pj + λ/n)/(1+ λd/n), we have pj/(1+ λd/n) ⩽ p̂j ⩽ pj + λ/n.
We therefore have(√

p̂j −
√
pj

)2
⩽ 2

(√
p̂j −

√
pj

)2
+ 2

(√
pj −

√
pj

)2

⩽ 2max
{(√

pj −
√
pj

(
1 +

λd

n

)−1/2)2
,
(√

pj +
λ

n
−
√
pj

)2}
+ 2

(√
pj −

√
pj

)2

⩽ 2
(
1−

(
1 +

λd

n

)−1/2)2
pj + 2

(√
pj +

λ

n
−
√
pj

)2
+ 2

(√
pj −

√
pj

)2
. (61)
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Using that, for any u ∈ R+, one has 1−(1+u)−1/2 = u/(1+u+
√
1 + u) ⩽ u/(2

√
u+

√
u) =

√
u/3,

we can bound the first term in (61) as(
1−

(
1 +

λd

n

)−1/2)2
pj ⩽

(√
λd/n

3

)2

pj ⩽
λd

9n
· pj .

Likewise, we can bound the second term as follows:(√
pj + λ/n−

√
pj

)2
=

(
(pj + λ/n)− pj√
pj + λ/n+

√
pj

)2

⩽

(
λ/n√
λ/n

)2

=
λ

n
.

Plugging these two bounds into (61), summing over j = 1, . . . , d and using that
∑d

j=1 pj = 1,
we deduce that

d∑
j=1

(√
p̂j −

√
pj

)2
⩽

2λd

9n
·

d∑
j=1

pj +
2λd

n
+ 2

d∑
j=1

(√
pj −

√
pj

)2

=
20λd

9n
+ 2

d∑
j=1

(√
pj −

√
pj

)2
. (62)

We now turn to bounding the second term in the decomposition (60). First, since λ ⩽ n/d,
we have n+ λd ⩽ 2n, and thus p̂j ⩾ max{Nj , λ}/(2n). This implies that

d∑
j=1

pj log
(pj
p̂j

)
1
(
p̂j ⩽

pj
8

)
⩽

d∑
j=1

pj log
( pj
λ/(2n)

)
1
(max{Nj , λ}

2n
⩽
pj
8

)
=

∑
j : pj⩾4λ/n

pj log
(2npj

λ

)
1
(
Nj ⩽

npj
4

)
. (63)

Plugging upper bounds (62) and (63) into the decomposition (61) concludes the proof.

6.2 Upper bound in Hellinger distance

In this section, we proceed with the control of the first term in the decomposition of Lemma 3.
Specifically, Lemma 4 below provides a high-probability bound on the squared Hellinger distance
between the empirical distribution Pn and the true distribution P . This bound is established
by combining the the analysis of the reverse-relative entropy from [Agr22] (for large proba-
bilities) with concentration inequalities deduced from negative association [JDP83] (for small
probabilities).

Lemma 4. Let n, d ⩾ 2 and δ ∈ (0, 1). For any P ∈ Pd, letting sn(P ) =
∑d

j=1min(1, npj) and
denoting by Pn = (p1, . . . , pd) the empirical distribution of X1, . . . , Xn, one has

PP

( d∑
j=1

(√
pj −

√
pj

)2
⩾

4sn(P ) + 7 log(1/δ)

n

)
⩽ 2δ . (64)

We note in passing that this bound is of the right order of magnitude, as one may check that
EP [

∑d
j=1(

√
pj −

√
pj)

2] ≍ sn(P )/n.

Proof of Lemma 4. Let J+ = {1 ⩽ j ⩽ d : pj ⩾ 1/n} and J− = {1, . . . , d} \ J+. Also, let
s+ = |J+| and s− = n

∑
j∈J− pj , so that sn(P ) = s+ + s−. From the inequalities (√p−√

q)2 ⩽
D(p, q) (Lemma 20) and (

√
p−√

q)2 ⩽ p+ q, it follows that
d∑

j=1

(√
pj −

√
pj

)2
⩽

∑
j∈J+

D
(
pj , pj

)
+

∑
j∈J−

(
pj + pj

)
. (65)
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First term. We start by controlling the first term in (65), following [Agr22]. Specifically,
let H+ =

∑
j∈J+ D(pj , pj). By proceeding as in [Agr22, Corollary 1.7], except that in [Agr22,

Proposition 2.4] we sum only over indices j ∈ J+ (rather than over 1 ⩽ j ⩽ d), we obtain the
following inequality: for any t ∈ (0, n/2),

logEP

[
et(H

+−EP [H+])
]
⩽

4s+t2/n2

1− 2t/n
.

In other words, H+ − EP [H
+] is sub-gamma [BLM13, §2.4] with variance factor 8s+/n2 and

shape parameter 2/n. Hence, by [BLM13, p. 29], one has for every δ ∈ (0, 1),

P
(
H+ − EP [H

+] ⩾
4
√
s+ log(1/δ)

n
+

2 log(1/δ)

n

)
⩽ δ . (66)

In addition, recalling the inequality h(t) ⩽ (t− 1)2 for any t ∈ R+ (Lemma 14), we have for all
p, q ∈ R+, q > 0:

D(p, q) = qh
(p
q

)
⩽ q

(p
q
− 1

)2
=

(p− q)2

q
.

This implies that

EP [H
+] =

∑
j∈J+

EP [D(pj , pj)] ⩽
∑
j∈J+

EP [(pj − pj)
2]

pj
=

∑
j∈J+

pj(1− pj)/n

pj
⩽
s+

n
.

Plugging the inequality into (66), we deduce that with probability at least 1− δ, we have

H+ <
s+ + 4

√
s+ log(1/δ) + 2 log(1/δ)

n
⩽

(1 + 2
√
2)s+ + (2 + 2

√
2) log(1/δ)

n
. (67)

Second term. We now turn to the second term in (65). Note that
∑

j∈J− pj = n−1
∑

j∈J− Nj .
In addition, by [JDP83, 3.1(a)], the variables (Nj)1⩽j⩽d are negatively associated, in the sense
of [JDP83, Definition 2.1]. This implies in particular that, for every t ∈ R+,

E
[
exp

(
t
∑
j∈J−

Nj

)]
⩽

∏
j∈J−

E
[
etNj

]
=

∏
j∈J−

(
1− pj + pje

t
)n

⩽
∏
j∈J−

exp
{
npj(e

t − 1)
}
= exp

{
n

∑
j∈J−

pj(e
t − 1)

}
= exp

{
s−(et − 1)

}
.

Rearranging and using that et−1− t =
∑

k⩾2
tk

k! ⩽
∑

k⩾2
tk

2 = t2

2(1−t) for any t ∈ [0, 1), we obtain
that for any 0 ⩽ t < 1:

logE
[
exp

(
t

{ ∑
j∈J−

Nj − s−
})]

⩽ s−(et − 1− t) ⩽
s−t2

2(1− t)
.

Using again the sub-gamma tail bound [BLM13, p. 29], we conclude that, with probability at
least 1− δ, ∑

j∈J−

Nj < s− +
√

2s− log(1/δ) + log(1/δ) ⩽ 2
(
s− + log(1/δ)

)
,

namely ∑
j∈J−

(
pj + pj

)
= n−1

(
s− +

∑
j∈J−

Nj

)
<

3s− + 2 log(1/δ)

n
. (68)
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Conclusion. For δ ∈ (0, 1/2), with probability at least 1− 2δ both (67) and (68) hold. In this
case, inequality (65) together with the fact that s++ s− = sn(P ) and the bound 2

√
2 ⩽ 3 imply

that
d∑

j=1

(√
pj −

√
pj

)2
<

4sn(P ) + 7 log(1/δ)

n
.

This concludes the proof.

6.3 Control of the contribution of underestimated frequencies

The control of the second term, namely the bias due to the use of regularization, is immediate
when the parameter λ is not data-dependent; we also postpone its analysis in the context of
data-dependent regularization to the proof of Theorem 5 below.

We now turn to the control of the key term in the decomposition of Lemma 3, namely
the third term accounting for the contribution of classes whose true frequency is significantly
underestimated in the sample. Specifically, in this section we establish the following control on
the residual, which is arguably the core of the analysis:

Lemma 5. Let P ∈ Pd. For any λ ⩾ 1, let dλ = |{1 ⩽ j ⩽ d : pj ⩾ 4λ/n}| and

Rλ =
∑

j : pj⩾4λ/n

pj log
(2npj

λ

)
1
(
Nj ⩽

npj
4

)
.

For any δ ∈ (e−n/6, e−2), one has

PP

(
R1 ⩾

62000 d1 + 106000 log(1/δ) log log(1/δ)

n

)
⩽ 2δ . (69)

In addition, for any δ ∈ (e−n/6, e−d], if λ = log(1/δ)/d, then

PP

(
Rλ ⩾

74000 log(d) log(1/δ)

n

)
⩽ 2δ . (70)

Roughly speaking, inequality (69) will be used in the analysis of confidence-independent
estimators such as the Laplace estimator (or of confidence-dependent estimators in the low
confidence regime), while (70) will be used in the analysis of the confidence-dependent estimators
in the high-confidence regime.

Observe that the residual Rλ of Lemma 5 is a sum of dependent random variables, since
the counts (Nj)1⩽j⩽d are dependent. Up to a standard technique of Poisson sampling, one may
reduce its control to that of a “Poissonized” sum involving independent summands, stated next:

Lemma 6. Let Ñ1, . . . , Ñd be independent random variables, with Ñj ∼ Poisson(λj/2) for j =
1, . . . , d. For any λ ⩾ 1, let dλ = |{1 ⩽ j ⩽ d : λj ⩾ 4λ}| and

R̃λ =
∑

j : λj⩾4λ

λj log
(2λj
λ

)
1
(
Ñj ⩽

λj
4

)
.

For any δ ∈ (0, e−2), one has

P
(
R̃1 ⩾ 62000 d1 + 106000 log(1/δ) log log(1/δ)

)
⩽ δ . (71)

In addition, for any δ ∈ (0, e−d], if λ = log(1/δ)/d, then

P
(
R̃λ ⩾ 74000 log(d) log(1/δ)

)
⩽ δ . (72)
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Proof of Lemma 5 from Lemma 6. We resort to the technique of Poisson sampling. Specifically,
let (Xi)i⩾n+1 be an i.i.d. sequence of random variables with distribution P , independent from
X1, . . . , Xn. In addition, let N ∼ Poisson(n/2) be independent from the sequence (Xi)i⩾1. For
j = 1, . . . , d, define

Ñj =
∑

1⩽i⩽N

1(Xi = j) . (73)

It is a classical fact about Poisson random variables (which follows, e.g., from the combination
of [MU17, Theorem 5.6 p. 100] and [Dur10, Exercise 2.1.11 p. 55]) that Ñ1, . . . , Ñd are inde-
pendent random variables, with Ñj ∼ Poisson(npj/2) for j = 1, . . . , d. Consider now the event
E = {N ⩽ n}; by the Poisson deviation bound (Lemma 17), one has

P(E) = 1− P(N > n) ⩾ 1− e−D(n,n/2) ⩾ 1− e−n/6 ⩾ 1− δ . (74)

In addition, under E one has Ñj ⩽ Nj for j = 1, . . . , d, hence letting λj = npj ,

Rλ =
∑

j : pj⩾4λ/n

pj log
(2npj

λ

)
1
(
Nj ⩽

npj
4

)
⩽

1

n

∑
j : λj⩾4λ

λj log
(2λj
λ

)
1
(
Ñj ⩽

λj
4

)
. (75)

The right-hand side of (75) is controlled in Lemma 6, which concludes the proof.

We now turn to the proof of Lemma 6. It should be noted that R̃λ is a nonnegative weighted
sum of independent Bernoulli variables, with varying coefficient and parameters. Perhaps a
natural approach to control such a sum is to apply Bennett’s inequality [BLM13, Theorem 2.9
p. 35]. Unfortunately, this would lead to a highly suboptimal tail bound. Roughly speaking, the
reason why Bennett’s inequality fails to capture the right tail behavior of this sum is that it is
highly inhomogeneous, in the sense that the coefficients of the independent Bernoulli variables
may be of different orders of magnitude. In order to handle this structure, we instead evaluate
the upper envelope of the tails of the individual summands, and then resort to a sharp estimate
from Latała [Lat97] on moments of sums of independent random variables.

We start with the control on the tails of the individual summands that comprise R̃λ:

Lemma 7. For any λ ⩾ 1, let W (λ) be a random variable such that P(W (λ) = 0) = 1− e−2λ/7,
and P(W (λ) ⩾ t log(t/λ)) = e−t/14 for any t ⩾ 4λ. Then, for any j = 1, . . . , d such that λj ⩾ 4λ,
the random variable

V
(λ)
j = λj log

(λj
λ

)
1
(
Ñj ⩽

λj
4

)
is stochastically dominated by W (λ), in the sense that P(V (λ)

j ⩾ w) ⩽ P(W (λ) ⩾ w) for any
w ∈ R.

In particular, for λ = 1, Lemma 7 asserts that for any δ < e−2/7, the quantile of order 1−δ of
V

(1)
j is smaller than 14 log(1/δ) log(14 log(1/δ)) ≍ log(1/δ) log log(1/δ), regardless of the value

of λj ⩾ 4. By independence of the variables V (λ)
j and by Lemma 18, we deduce from Lemma 7

that the random variable R̃λ is stochastically dominated by
∑dλ

j=1W
(λ)
j , where W (λ)

1 ,W
(λ)
2 , . . .

are i.i.d. random variables with the same distribution as W (λ).

Proof of Lemma 7. First, since Ñj ∼ Poisson(λj/2), by the Poisson deviation bound (Lemma 17)
we have

P
(
Ñj ⩽

λj
4

)
⩽ exp

(
−D

(λj
4
,
λj
2

))
= exp

(
− (1− log 2)λj/4

)
⩽ e−λj/14 . (76)
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We need to show that P(V (λ)
j ⩾ w) ⩽ P(W (λ) ⩾ w) for any w ∈ R. For w ⩽ 0, both probabilities

are equal to 1. For 0 < w ⩽ 4 log(4)λ, this is a consequence of (76) as P(V (λ)
j ⩾ w) ⩽ P(Ñj ⩽

λj/4) ⩽ e−λj/14 ⩽ e−4λ/14 = e−2λ/7 = P(W (λ) ⩾ w).
For w > 4 log(4)λ, using that the map t 7→ t log(t/λ) is an increasing bijection from (4λ,+∞)

to (4 log(4)λ,+∞), we may write w = t log(t/λ) for some t > 4λ. There are now two cases.
First, if λj ⩾ t, then by (76) P(V (λ)

j ⩾ w) ⩽ P(Ñj ⩽ λj/4) ⩽ e−λj/14 ⩽ e−t/14 = P(W (λ) ⩾ w).

On the other hand, if λj < t, then V (λ)
j ⩽ λj log(λj/λ) < t log(t/λ), thus P(V (λ)

j ⩾ w) = 0 and
the inequality also holds.

We now aim to obtain a high-probability bound on the sum
∑dλ

j=1W
(λ)
j , which is a sum

of i.i.d. nonnegative random variables. Unfortunately, since W (λ) has super-exponential tails,
its moment generating functions is infinite at any positive value, thus one cannot rely on the
Chernoff approach to obtain such a tail bound. We will instead work with its moments, using a
moment estimate of Latała [Lat97]. Specifically, Lemma 8 below is a consequence of (part of)
[Lat97, Corollary 1] obtained by tracking the numerical constants in this result. We recall that,
for any p ∈ R+ such that p ⩾ 1 and any real random variable Z, we let ∥Z∥p = E[|Z|p]1/p ∈
R+ ∪ {+∞}.

Lemma 8 ([Lat97], Corollary 1). Let Z,Z1, . . . , Zm be i.i.d. nonnegative random variables.
Then, for any p ∈ [1,+∞),∥∥∥∥ m∑

i=1

Zi

∥∥∥∥
p

⩽ 2e2 sup
{p
s

(m
p

)1/s
∥Z∥s : max

(
1,
p

m

)
⩽ s ⩽ p

}
.

In order to apply Lemma 8, we need to control the Lp norm of W (λ). This is achieved in the
following lemma.

Lemma 9. For any p ∈ [1,+∞), one has∥∥W (λ)
∥∥
p
⩽ 215p log

(
max

{
e,

50p

λ

})
. (77)

Proof of Lemma 9. We have∥∥W (λ)
∥∥p
p
= E

[
(W (λ))p

]
=

∫ ∞

0
P
(
(W (λ))p ⩾ u

)
du

=

∫ (4 log(4)λ)p

0
e−2λ/7du+

∫ ∞

4 log(4)λ
P
(
W (λ) ⩾ w

)
pwp−1dw

= (4 log(4)λ)pe−2λ/7 +

∫ ∞

4λ
P
(
W (λ) ⩾ t log

( t
λ

))
p
(
t log

( t
λ

))p−1
log

(et
λ

)
dt

⩽ (4 log(4)λ)pe−2λ/7 +
p

2λ

∫ ∞

4λ
e−t/14

(
t log

( t
λ

))p
dt , (78)

where we used that log(et/λ) ⩽ 2 log(t/λ) ⩽ t log(t/λ)/(2λ). Now, for any t ⩾ 4λ, let

ϕλ(t) = log
{
e−t/28

(
t log

( t
λ

))p}
= p log(t) + p log log

( t
λ

)
− t

28
.

Since
ϕ′λ(t) =

p

t
+

p

t log(t/λ)
− 1

28
⩽

(
1 +

1

log 4

)p
t
− 1

28
,

we deduce that ϕ′λ(t) < 0 for any t ⩾ 50p, thus ϕλ decreases over [max{50p, 4λ},+∞).
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Small p. We first consider the case where 50p ⩽ 4λ. In this case, we get

sup
t⩾4λ

{
e−t/28

(
t log

( t
λ

))p}
= e−λ/7

(
4 log(4)λ

)p
,

and therefore

p

2λ

∫ ∞

4λ
e−t/14

(
t log

( t
λ

))p
dt ⩽

1

25
e−λ/7

(
4 log(4)λ

)p ∫ ∞

4λ
e−t/28dt =

28

25

(
4 log(4)λ

)p
e−2λ/7 .

Plugging this inequality into (78), we deduce that∥∥W (λ)
∥∥p
p
⩽ 2.2

(
4 log(4)λ

)p
e−2λ/7 .

We now apply the bound (ex/p)p ⩽ ex for x ∈ R+ to x = λ/7, which gives∥∥W (λ)
∥∥p
p
⩽ 2.2

(
4 log(4)

)p(7p
e

)p
e−λ/7 ⩽ 2.2(15p)pe−12.5p/7 ⩽ 2.2(2.4p)p ,

so that ∥W (λ)∥p ⩽ (2.2)1/p · 2.4p ⩽ 6p.

Large p. We now turn to the case where 4λ ⩽ 50p. In this case, we get

sup
t⩾4λ

{
e−t/28

(
t log

( t
λ

))p}
= sup

4λ⩽t⩽50p

{
e−t/28

(
t log

( t
λ

))p}
⩽ sup

t∈R+

{
e−t/28tp

}(
log

(50p
λ

))p
= e−p(28p)p

(
log

(50p
λ

))p
.

This implies that

p

2λ

∫ ∞

4λ
e−t/14

(
t log

( t
λ

))p
dt ⩽

p

2

(
28e−1p log

(50p
λ

))p
∫ ∞

4λ
e−t/28dt

⩽ 14p
(
28e−1p log

(50p
λ

))p
.

Plugging this inequality into (78) and using the bound (4 log(4)λ)pe−2λ/7 ⩽ (2.4p)p shown above,
we get ∥∥W (λ)

∥∥
p
⩽

[
(2.4p)p + 14p

(
28e−1p log

(50p
λ

))p]1/p
⩽ 2.4p+ 14p1/p · 28e−1p log

(50p
λ

)
⩽ 2.4p+ 210p log

(50p
λ

)
⩽ 215 log

(50p
λ

)
.

Hence, the desired bound holds for all p ⩾ 1.

Combining the moment estimate of Lemma 9 with Lemma 8, we obtain the following control
on the moments of the term that dominates residuals when λ = 1.

Lemma 10. For any p ⩾ 1, one has∥∥∥∥ d1∑
j=1

W
(1)
j

∥∥∥∥
p

⩽ 15000d1 + 4600p log(50p) . (79)
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Proof of Lemma 10. We start with the case where p ⩾ d1. In this case, plugging Lemma 9 into
Lemma 8 and bounding d1/p ⩽ 1 gives:∥∥∥∥ d1∑

j=1

W
(1)
j

∥∥∥∥
p

⩽ 2e2 sup
{p
s

(d1
p

)1/s
215s log

(
max

{
e, 50s

})
: max

(
1,
p

d1

)
⩽ s ⩽ p

}
⩽ 2e2 sup

1⩽s⩽p

{
215p log(50s)

}
= 430e2p log

(
50p

)
.

We now turn to the case where p ⩽ d1. In this case, Lemmas 8 and 9 imply that∥∥∥∥ d1∑
j=1

W
(1)
j

∥∥∥∥
p

⩽ 430e2 sup
1⩽s⩽p

{
p
(d1
p

)1/s
log(50s)

}
.

We bound the supremum over 1 ⩽ s ⩽ p as follows. If 1 ⩽ s ⩽ 2, then (using that d1/p ⩾ 1)

p
(d1
p

)1/s
log(50s) ⩽ p

(d1
p

)1/s
log(100) ⩽ p

(d1
p

)
log(100) = log(100)d1 .

If s ⩾ 2, we consider two cases. If s ⩽
√
d1/p, then

p
(d1
p

)1/s
log(50s) ⩽ p

(d1
p

)1/2
log

(
50

√
d1
p

)
= d1

log(50) + log(
√
d1/p)√

d1/p
⩽ (log 50 + e−1)d1 .

Finally, if
√
d1/p ⩽ s ⩽ p, then

p
(d1
p

)1/s
log(50s) ⩽ ps1/s log(50p) ⩽ e1/ep log(50p) .

Putting things together, for any value of p one has∥∥∥∥ d1∑
j=1

W
(1)
j

∥∥∥∥
p

⩽ 430e2max
{
log(100)d1, e

1/ep log(50p)
}
,

which proves (79) after bounding the maximum by a sum and simplifying constants.

Next, we obtain similarly a control of suitable large moments of the sum.

Lemma 11. Assume that p ⩾ d and that λ = p/d. Then∥∥∥∥ dλ∑
j=1

W
(λ)
j

∥∥∥∥
p

⩽ 3200 log(50d)p . (80)

Proof of Lemma 11. Since p ⩾ d, we have in particular that dλ/p ⩽ 1. Plugging Lemma 9 into
Lemma 8 therefore gives:∥∥∥∥ dλ∑

j=1

W
(λ)
j

∥∥∥∥
p

⩽ 2e2 sup
{p
s

(dλ
p

)1/s
215s log

(
max

{
e,

50s

λ

})
: max

(
1,

p

dλ

)
⩽ s ⩽ p

}
⩽ 2e2 sup

1⩽s⩽p

{
215p log

(
max

{
e,

50s

λ

})}
= 430e2p logmax

{
e,

50p

λ

}
= 430e2p log

(
50d

)
.

The conclusion follows by bounding 430e2 ⩽ 3200.
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With these results in place, we can conclude the proof of Lemma 6—and thus, of Lemma 5.

Proof of Lemma 6. Denote by ≼ the stochastic domination relation between real random vari-
ables (Definition 4). As noted above, by independence of Ñ1, . . . , Ñd it follows from Lemmas 7
and 18 that

R̃λ ⩽
3

2

∑
j : λj⩾4λ

λj log
(λj
λ

)
1
(
Ñj ⩽

λj
4

)
≼

3

2

dλ∑
j=1

W
(λ)
j . (81)

(Above, we used that log(2λj/λ) ⩽ 3
2 log(λj/λ) for λj/λ ⩾ 4.) It therefore suffices to establish

tail bounds on the right-hand side of (81). In both cases λ = 1 and λ = log(1/δ)/d, we deduce
such tail bounds from the moment bounds of Lemmas 10 and 11, respectively, together with the
following inequality: for any real random variable Z and p ⩾ 1,

P(|Z| ⩾ e∥Z∥p) = P(|Z|p ⩾ ep E[|Z|p]) ⩽ e−p ,

applied to p = log(1/δ). Inequalities (71) and (72) are obtained by further bounding constants,
using in particular that log(50) ⩽ log2(50)min{log(1/δ), log d} as δ < e−2 and d ⩾ 2.

In the following sections, we proceed with the proofs of Theorem 1, 3 and 5—the first two
directly obtained by combining the results above.

6.4 Proof of Theorem 1

We apply the decomposition of Lemma 3 with λ = 1. The first term in this decomposition is
bounded through the Hellinger bound of Lemma 4, together with the inequality sn(P ) ⩽ d.
The second term is equal to 7d/n. Finally, the third term is bounded through the bound (69)
on R1 from Lemma 5. Putting things together and using a union bound, we obtain, for any
δ ∈ (e−n/6, e−2),

PP

(
KL(P, P̂n) ⩾ 6× 4d+ 7 log(1/δ)

n
+

7d

n
+

62000d+ 106000 log(1/δ) log log(1/δ)

n

)
⩽ 4δ .

Further bounding constants gives the bound of Theorem 1.

6.5 Proof of Theorem 3

We consider two cases. If log(1/δ) ⩽ d, then λδ = 1 and P̂n,δ coincides with the Laplace
estimator. Then, Theorem 1 ensures that, with probability at least 4δ,

KL(P, P̂n,δ) ⩽ 110000
d+ log(1/δ) log log(1/δ)

n
⩽ 110000

d+ log(1/δ) log d

n
. (82)

On the other hand, if log(1/δ) > d, namely δ ∈ (e−n/6, e−d), then λδ = log(1/δ)/d > 1. We
then proceed similarly to the proof of Theorem 1, with only two changes: the second term in
the decomposition of Lemma 3 now equals 7λδd/n = 7 log(1/δ)/n, while the third term is now
controlled using the bound (70) on Rλδ

from Lemma 5. This gives, with probability at least
1− 4δ,

KL(P, P̂n,δ) < 6× 4d+ 7 log(1/δ)

n
+

7 log(1/δ)

n
+

74000 log(d) log(1/δ)

n
,

which also implies the desired tail bound.
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6.6 Proof of Theorem 5

We are now in position to complete the proof of Theorem 5, up to Theorem 6 which we prove
in Section 8 below.

In what follows, we fix P ∈ Pd and let sn = sn(P ) and s◦n = s◦n(P ). For now, let λ̃ be either
λ̂ or λ̂δ, and let P̃ be the add-λ̃ estimator. First, the decomposition of Lemma 3 writes:

KL(P, P̃ ) ⩽ 6

d∑
j=1

(√
pj −

√
pj

)2
+

7λ̃d

n
+

∑
j : pj⩾4λ̃/n

pj log
(2npj

λ̃

)
1
(
Nj ⩽

npj
4

)
. (83)

First term. The first term in the decomposition (83) is bounded through Lemma 4: with
probability at least 1− 2δ,

6
d∑

j=1

(√
pj −

√
pj

)2
<

24sn + 42 log(1/δ)

n
. (84)

Second term. For the second term, note that λ̃ ⩽ λ̂δ ⩽ max{Dn, log(1/δ)}/d, and that by
inequality (125) from Lemma 19, with probability at least 1− δ,

Dn ⩽ 2EP [Dn] + 2 log(1/δ) .

Combining these inequalities and recalling that EP [Dn] ⩽ sn (Fact 1), we get: with probability
1− δ,

7λ̃d

n
⩽

14sn + 14 log(1/δ)

n
. (85)

Third term. We now turn to the control of the third term, which requires the most effort.
We first deal with the case where λ̃ > 1, which directly reduces to Lemma 5. Indeed, since

λ̂ = Dn/d ⩽ 1, one must have λ̃ = λ̃δ = log(1/δ)/d, and δ ⩽ e−d. Hence, inequality (70) from
Lemma 5 gives: with probability 1− 2δ,∑

j : pj⩾4λ̃/n

pj log
(2npj

λ̃

)
1
(
Nj ⩽

npj
4

)
= Rλδ

⩽
74000 log(d) log(1/δ)

n
. (86)

From now on, we assume that λ̃ ⩽ 1. In this case, we further decompose the third term
(denoted R

λ̃
) as follows:

R
λ̃
=

∑
j : pj⩾4λ̃/n

pj log(2npj)1
(
Nj ⩽

npj
4

)
+

∑
j : pj⩾4λ̃/n

pj1
(
Nj ⩽

npj
4

)
· log

(
1

λ̃

)
. (87)

We then bound the first term above as∑
j : pj⩾4λ̃/n

pj log(2npj)1
(
Nj ⩽

npj
4

)
=

∑
j : 4λ̃/n⩽pj<4/n

pj log(2npj)1
(
Nj ⩽

npj
4

)
+

∑
j : pj⩾4/n

pj log(2npj)1
(
Nj ⩽

npj
4

)
⩽ log(8)

∑
j : 4λ̃/n⩽pj<4/n

pj1
(
Nj ⩽

npj
4

)
+R1 ⩽ log(8)

∑
j : pj<4/n

pj +R1

⩽
4 log(8)sn

n
+R1 .
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Hence, bounding R1 via the bound (69) of Lemma 5 and using that d1 = |{j : pj ⩾ 4/n}| ⩽ sn,
we obtain: with probability 1− 2δ,∑

j : pj⩾4λ̃/n

pj log(2npj)1
(
Nj ⩽

npj
4

)
⩽

4 log(8)sn
n

+
62000 sn + 106000 log(1/δ) log log(1/δ)

n

⩽
63000 sn + 106000 log(1/δ) log log(1/δ)

n
.

It remains to upper bound the second term in (87). Since λ̃ ⩾ λ̂ = Dn/d, and recalling the
definition of the underestimated mass Un (Definition 3), we have

∑
j : pj⩾4λ̃/n

pj1
(
Nj ⩽

npj
4

)
· log

(
1

λ̃

)
⩽

d∑
j=1

pj1
(
Nj ⩽

npj
4

)
· log

(
d

Dn

)
= Un log

(
d

Dn

)
.

Now, Theorem 6 shows that, with probability at least 1− 8δ, one has

Un ⩽
336 s◦n/112(P ) + 2500e log(1/δ)

n
.

Thus, under the same event (using that Dn ⩾ 1),

Un log

(
d

Dn

)
⩽

336 s◦n/112(P ) log(d/Dn) + 2500e log(d) log(1/δ)

n
. (88)

We now consider two cases, depending on whether log(1/δ) is larger or smaller than sn.
First, by deviation lower bound (124) from Lemma 19, letting s′n = EP [Dn] one has

P
(
Dn ⩽

s′n
2

)
⩽ exp

{
−D

(s′n
2
, s′n

)}
= exp

{
− 1− log 2

2
s′n

}
.

But since s′n ⩾ (1− e−1)sn (Fact 1), after bounding constants we deduce that

P
(
Dn ⩽ 0.3sn

)
⩽ e−sn/21 .

Thus, if log(1/δ) ⩽ sn/21, then with probability at least 1− δ one has

Dn ⩾ 0.3sn ,

which combined with (88) gives, with probability 1− 9δ,

Un log

(
d

Dn

)
⩽

336 s◦n/112(P ) log(2ed/sn) + 2500e log(d) log(1/δ)

n
.

On the other hand, if log(1/δ) > sn/21, then by lower-bounding Dn ⩾ 1 in (88) and using that

s◦n/112 ⩽ sn/112 ⩽ sn ⩽ 21 log(1/δ) ,

we get with probability at least 1− δ that

Un log

(
d

Dn

)
⩽

336× 21 log(1/δ)× log(d) + 2500e log(d) log(1/δ)

n
⩽

14000 log(d) log(1/δ)

n
.
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Summarizing, we get that regardless of δ, we have with probability at least 1− 9δ that

∑
j : pj⩾4λ̃/n

pj1
(
Nj ⩽

npj
4

)
· log

(
1

λ̃

)
⩽

336 s◦n/112(P ) log(2ed/sn) + 14000 log(d) log(1/δ)

n
.

Putting this inequality into the decomposition (87) of the third term, we get that whenever
λ̃ ⩽ 1, we have with probability at least 1− 11δ,

R
λ̃
⩽

63000 sn + 106000 log(1/δ) log log(1/δ)

n
+

+
336 s◦n/112(P ) log(2ed/sn) + 14000 log(d) log(1/δ)

n

⩽
64000 sn + 336 s◦n/112(P ) log(ed/sn) + 120000max{log d, log log(1/δ)} log(1/δ)

n
. (89)

Conclusion. We first establish the bound (34) for the estimator P̂ ad
n . In this case, one has λ̂ =

Dn/d ⩽ 1, thus the bound (89) applies. Injecting this inequality, together with the bounds (84)
and (85) on the first two terms, into the decomposition (83), we obtain: with probability at
least at 1− 14δ,

KL(P, P̂ ad
n ) <

24sn + 42 log(1/δ)

n
+

14sn + 14 log(1/δ)

n
+

+
64000 sn + 336 s◦n/112(P ) log(ed/sn) + 120000max{log d, log log(1/δ)} log(1/δ)

n
,

which implies the claimed bound.
We now conclude with the estimator P̂ ad

n,δ. Then, either log(1/δ) ⩽ d, in which case λ̂δ ⩽ 1

and again the bound on the third term for λ̃ ⩽ 1 applies, so that the same bound as for P̂ ad
n

holds. In addition, one has max{log d, log log(1/δ)} = log d in this case. On the other hand,
if log(1/δ) > d, then λ̂δ > 1, thus the third term is bounded using (86). Combining with the
bounds (84) and (85) on the first two terms gives the desired inequality.

7 Proofs of lower bounds

In this section, we provide the proofs of the lower bounds stated in previous sections, specifically
the tail (low-probability) lower bounds of Theorem 2, Lemma 1, Theorem 4 and Corollary 1, as
well as the high-probability minimax lower bound of Proposition 1.

7.1 Proof of Theorem 2

We first prove Theorem 2 on confidence-independent estimators. The proof rests on the following
lemma.

Lemma 12. Let n ⩾ d ⩾ 2 and κ ⩾ 1, and P̂n = Φ(X1, . . . , Xn) be an estimator as in
Theorem 2. Then, for any δ ∈ (e−n, e−16κ2

), there exists a distribution P ∈ Pd such that

PP

(
KL(P, P̂ ) ⩾

log(1/δ) log log(1/δ)

10n

)
⩾ δ . (90)
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Proof of Lemma 12. Let Q = Φ(1, . . . , 1) = (q1, . . . , qd) ∈ Pd be the value of the estimator
when only the first class is observed. Clearly, if P = δ1, then P̂n = Q almost surely, and thus
condition (17) writes:

KL(δ1, Q) = log(1/q1) ⩽
κd

n
.

Since 1− q1 ⩽ − log(1− (1− q1)) = log(1/q1), this implies that
d∑

j=2

qj = 1− q1 ⩽
κd

n
,

and thus there exists j ∈ {2, . . . , d} such that qj ⩽ (κd/n)/(d − 1) ⩽ 2κ/n. Now, for δ ∈
(e−n, e−16κ2

), consider the distribution P = Pδ,n = (1 − ρ)δ1 + ρδj , where ρ = 1 − δ1/n. Then,
the event E = {X1 = · · · = Xn = 1} is such that

PP (E) = (1− ρ)n = δ .

In addition, under E one has P̂ = Q, thus

KL(P, P̂n) = KL(P,Q) ⩾ D(ρ, qj) = qjh
( ρ
qj

)
.

By convexity of the exponential function, one has 1 − e−x ⩾ (1 − e−1)x for x ∈ [0, 1]; since
log(1/δ)

n ⩽ 1, this implies that ρ = 1− exp
(
− log(1/δ)

n

)
⩾ (1− e−1) log(1/δ)n . Since δ ⩽ e−16κ2 , we

therefore have
ρ

qj
⩾

(1− e−1)16κ2/n

2κ/n
= 8(1− e−1)κ ⩾ e .

Hence, by Lemma 14 we have

qjh
( ρ
qj

)
⩾ qj × e−1 ρ

qj
log

( ρ
qj

)
⩾ e−1(1− e−1)

log(1/δ)

n
log

((1− e−1) log(1/δ)/n

2κ/n

)
⩾

log(1/δ)

5n
log

( log(1/δ)
4κ

)
⩾

log(1/δ) log log(1/δ)

10n
.

This concludes the proof of Lemma 12.

We can now conclude the proof of Theorem 2.

Proof of Theorem 2. The statement follows from a combination of the lower bounds of Lemma 12
and of the consequence (25) of Proposition 1. Specifically, one the one hand, since d ⩾ 3300 ⩾
3000 log

(
3

1−e−16

)
, it follows from (25) that there exists P ∈ Pd such that

PP

(
KL(P, P̂n) ⩾

d

4600n

)
⩾ 1− 3 exp

(
− d

3000

)
⩾ e−16 ⩾ δ .

On the other hand, by Lemma 12, there exists P ∈ Pd such that

PP

(
KL(P, P̂n) ⩾

log(1/δ) log log(1/δ)

10n

)
⩾ δ .

By taking the best of these two lower bounds (depending on d, δ), we deduce that there exists
P ∈ Pd such that, with probability at least δ,

KL(P, P̂n) ⩾ max

{
d

4600n
,
log(1/δ) log log(1/δ)

10n

}
⩾

99

100
· d

4600n
+

1

100
· log(1/δ) log log(1/δ)

10n
⩾
d+ log(1/δ) log log(1/δ)

5000n
,

which establishes the claim.
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7.2 Proof of Lemma 1 and Theorem 4

In this section, we establish Lemma 1 and then deduce Theorem 4.

Proof of Lemma 1. Fix n, d, δ as in Lemma 1. We define the class F = Fn,d,δ as

F =
{
P (j) = δ1/nδ1 +

(
1− δ1/n

)
δj : 1 ⩽ j ⩽ d

}
=

{
δ1
}
∪
{
P (j) : 2 ⩽ j ⩽ d

}
.

Let Φ : [d]n → Pd be an estimator, and let Q = (q1, . . . , qd) = Φ(1, . . . , 1) denote the value of
this estimator when only the first class is observed. Let α ∈ R+ such that 1− q1 = αd/n.

First, assume that α ⩾ log(1/δ)/(7
√
d). In this case, if P = P (1) = δ1, then P̂n = Q almost

surely, hence

KL(P, P̂n) = KL(δ1, Q) = log(1/q1) ⩾ 1− q1 =
αd

n
.

Since α ⩾ log(1/δ)/(7
√
d), we deduce that

KL(P, P̂n) ⩾

√
d log(1/δ)

7n
⩾

log(d) log(1/δ)

14n
. (91)

Now, assume that α < log(1/δ)/(7
√
d). Since

∑d
j=2 qj = 1 − q1 = αd/n, there exists

2 ⩽ j ⩽ d such that

qj ⩽
αd

n(d− 1)
⩽

2α

n
<

2 log(1/δ)

7n
√
d

.

Let P = P (j), so that letting E = {X1 = 1, . . . , Xn = 1}, we have PP (j)(E) = (δ1/n)n = δ.
Under E, one has P̂n = Q, thus denoting ρ = 1− δ1/n we have

KL(P, P̂n) = KL(P (j), Q) ⩾ D(ρ, qj) = qjh
( ρ
qj

)
.

By convexity of the exponential function, one has 1 − e−x ⩾ (1 − e−1)x for x ∈ [0, 1]; since
log(1/δ)

n ⩽ 1, this implies that ρ = 1− exp
(
− log(1/δ)

n

)
⩾ (1− e−1) log(1/δ)n . We therefore have

ρ

qj
⩾

(1− e−1) log(δ−1)/n

2 log(δ−1)/(7n
√
d)

=
7(1− e−1)

√
d

2
⩾ 2

√
d ⩾ e .

Hence, by Lemma 14 we have

KL(P, P̂n) ⩾ qjh
( ρ
qj

)
⩾ qj × e−1 ρ

qj
log

( ρ
qj

)
⩾ e−1(1− e−1)

log(1/δ)

n
log(2

√
d)

⩾
log(1/δ) log(

√
d)

5n
=

log(d) log(1/δ)

10n
.

This concludes the proof of Lemma 1.

Proof of Theorem 4. We again use the consequence (25) of Proposition 1, this time combined
with Lemma 1. Specifically, since d ⩾ 5000 ⩾ 3000 log( 3

1−e−1 ), it follows from (25) that there
exists P ∈ Pd such that

PP

(
KL(P, P̂n) ⩾

d

4600n

)
⩾ 1− 3 exp

(
− d

3000

)
⩾ e−1 ⩾ δ .

On the other hand, by Lemma 1, there exists P ∈ Pd such that

PP

(
KL(P, P̂n) ⩾

log(d) log(1/δ)

14n

)
⩾ δ .
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As before, taking the best of these two lower bounds shows that there exists P ∈ Pd under
which, with probability at least δ,

KL(P, P̂n) ⩾
99

100
· d

4600n
+

1

100
· log(d) log(1/δ)

14n
⩾
d+ log(d) log(1/δ)

5000n
.

7.3 Proof of Proposition 1

In this section, we turn to the proof of the high-probability lower bound of Proposition 1.
Note that if s ⩽ 35, then 1 − 3e−s/35 < 0 and the inequality is trivial. From now on, we

therefore assume that s ⩾ 36.

Random support. Fix n, d, s and an estimator P̂n = Φ(X1, . . . , Xn). Let S denote the class
of subsets σ of {2, . . . , d} with cardinality |σ| = s− 1. For any σ ∈ S, we let Pσ = (pσ1 , . . . , p

σ
d)

be the element of Ps,d defined by

Pσ =
(
1− s− 1

2en

)
δ1 +

1

2en

∑
j∈σ

δj . (92)

In addition, we let π denote the uniform distribution on S, which induces a “prior” distribution
on Ps,d. We can then define a joint distribution for (σ, (X1, . . . , Xn)) on S × [d]n as follows:
σ ∼ π, and conditionally on σ, the variables X1, . . . , Xn are i.i.d. with distribution Pσ. We
denote by πP the marginal distribution of X1, . . . , Xn under this distribution. As before, for
1 ⩽ j ⩽ d we denote by Nj =

∑n
i=1 1(Xi = j) the number of occurrences of the class j.

We start by establishing an upper bound on the number Dn =
∑d

j=1 1(Nj ⩾ 1) of distinct
classes. For any σ ∈ S, using that E[Dn|σ] = EPσ [Dn] ⩽ 1 + (s− 1)n/(2en) = 1 + (s− 1)/(2e)
(where we used that PPσ(Nj ⩾ 1) ⩽

∑n
i=1 PPσ(Xi = j)) and applying Lemma 19, we obtain

that

P
(
Dn ⩾ e+

s− 1

2

)
= P

(
Dn ⩾ e ·

[
1 +

s− 1

2e

])
⩽ exp

(
− 1− s− 1

2e

)
⩽ exp

(
− s

2e

)
.

In what follows, we define the event E = {Dn < e + (s − 1)/2, Nj ⩾ 1}, so that P(Ec) ⩽
exp(−s/(2e)) + ( s−1

2en )
n ⩽ exp(−s/(2e)) + (2e)−n. We also let σ̂ = {2 ⩽ j ⩽ d : Nj ⩾ 1}, so that

|σ̂| = Dn − 1 under E.
We now proceed to the lower bound on the estimation error. For any t > 0, we have

Eσ∼π[P(KL(Pσ, P̂n) ⩾ t|σ)] = E[P(KL(Pσ, P̂n) ⩾ t|X1, . . . , Xn)] . (93)

We thus aim at establishing a lower bound of the following form, for some constant C > 0:

P
(
KL(Pσ, P̂n) ⩾

s log(ed/s)

Cn

∣∣∣∣X1, . . . , Xn

)
⩾ e−s/C .

Below, we reason conditionally on X1, . . . , Xn. First, note that the (posterior) conditional
distribution of σ given X1, . . . , Xn, denoted π̂, is the uniform distribution on the set

Ŝ = {σ ∈ S : σ̂ ⊂ σ} .

(Indeed, for any σ ∈ S \ Ŝ, the distribution P⊗n
σ puts a mass of 0 to the sequence (X1, . . . , Xn);

while all measures P⊗n
σ with σ ∈ Ŝ put the same positive mass to such a sequence.) In other

words, σ = σ̂∪ σ̃, where (conditionally on X1, . . . , Xn) σ̃ is uniformly distributed over all subsets
of {2, . . . , d} \ σ̂ with s−Dn elements. Write P̂n = (p̂1, . . . , p̂d), and let α̂ = n(1− p̂1).
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Large α̂. Assume first that α̂ ⩾
√
sd/20. In this case, applying Lemma 16 with J = {2, . . . , d}

gives, for any σ ∈ S,

KL(Pσ, P̂n) ⩾ D

( d∑
j=2

pσj ,

d∑
j=2

p̂j

)
= D

(
s− 1

2en
,
α̂

n

)
=
α̂

n
· h

(s− 1

2eα̂

)
.

Now, if α̂ ⩾
√
sd/20, we have s−1

2eα̂ ⩽ 10e−1
√
s/d ⩽ 1/2 as d/s ⩾ 55, thus h( s−1

2eα̂ ) ⩾ h(1/2) =

(1−log 2)/2 ⩾ 1/7. The previous inequality then writes, for any σ ∈ Ŝ (and thus with probability
1 over σ ∼ π̂),

KL(Pσ, P̂n) ⩾
1

7

√
sd

20n
=

s

140n

√
d

s
⩾

s

140n
log

(
e

√
d

s

)
⩾
s log(ed/s)

280n
. (94)

Small α̂. Assume from now on that α̂ ⩽
√
sd/20. We start by noting that

KL(Pσ, P̂n) =
d∑

j=1

D(pσj , p̂j) ⩾
∑

2⩽j⩽d, j ̸∈σ̂
D
(
pσj , p̂j

)
⩾

∑
2⩽j⩽d, j ̸∈σ̂

D
( 1

2en
, p̂j

)
1(j ∈ σ̃) . (95)

Observe that in the right-hand side of (95), conditionally on X1, . . . , Xn, the only randomness
comes from the presence of σ̃. Now since

∑d
j=2 p̂j = α̂/n ⩽

√
sd/(20n), we have:

∣∣∣{2 ⩽ j ⩽ d : p̂j ⩾

√
s/d

10n

}∣∣∣ = ∣∣∣{2 ⩽ j ⩽ d : p̂j ⩾

√
sd/(20n)

d/2

}∣∣∣ ⩽ d/2 .

Recall that, under the event E, one has |σ̂| = Dn− 1 ⩽ e− 1+ (s− 1)/2. It follows that, letting

Ĵ =

{
2 ⩽ j ⩽ d : p̂j <

√
s/d

10n
, Nj = 0

}
,

we have, recalling that d ⩾ 55s ⩾ 1980,

|Ĵ | ⩾ (d− 1)− d

2
− |σ̂| ⩾ d

2
− 1− (e− 1)− s− 1

2
=
d− s− (2e− 1)

2

⩾
d

2

(
1− 1

55
− 2e− 1

1980

)
⩾ 0.48d . (96)

In addition, since D( 1
2en , ·) decreases on (0, 1

2en), we have for every j ∈ Ĵ :

D
( 1

2en
, p̂j

)
⩾ D

( 1

2en
,

√
s/d

10n

)
=

√
s/d

10n
· h

(
5e−1

√
d/s

)
⩾

√
s/d

10n
· e−15e−1

√
d/s log

(
5e−1

√
d/s

)
⩾

1

4e2n
log

(
ed

s

)
where we used that 5e−1

√
d/s ⩾ e as d ⩾ 55s, and that h(t) ⩾ e−1t log t for t ⩾ e (Lemma 14).

Plugging this lower bound into (95), we obtain

KL(Pσ, P̂n) ⩾
1

4e2n
log

(
ed

s

)∑
j∈Ĵ

1(j ∈ σ̃) =
1

4e2n
log

(
ed

s

)
|Ĵ ∩ σ̃| . (97)

We will now show that |Ĵ ∩ σ̃| ≳ s with high probability over the draw of σ̃, conditionally
on X1, . . . , Xn. Although one could in principle show this by purely combinatorial means, we
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will instead resort to the notion of negative association [JDP83], which provides a particularly
convenient way to handle the dependence that arises here.

Denote σ̂c = {2, . . . , d} \ σ̂, so that |σ̂c| = d−Dn under E. Since σ̃ is uniformly distributed
on subsets of σ̂c with s−Dn elements, conditionally on X1, . . . , Xn the vector (1(j ∈ σ̃))j∈σ̂c is
uniformly distributed over all permutations of the vector (1(j ∈ σ̃0))j∈σ̂c for some fixed σ̃0 ⊂ σ̂c

with s − Dn elements. In other words, this distribution is a permutation distribution, which
by [JDP83, Theorem 2.11] is negatively associated, in the sense of [JDP83, Definition 2.1]. By
the restriction property of negatively associated random variables [JDP83, Property P4], this
implies that the variables (1(j ∈ σ̃))

j∈Ĵ are negatively associated. This implies in particular
that, for every λ ∈ R+,

E
[
exp

(
− λ|Ĵ ∩ σ̃|

)∣∣X1, . . . , Xn

]
= E

[∏
j∈Ĵ

exp
(
− λ1(j ∈ σ̃)

)∣∣∣∣X1, . . . , Xn

]

⩽
∏
j∈Ĵ

E
[
exp

(
− λ1(j ∈ σ̃)

)∣∣X1, . . . , Xn

]
=

(
s−Dn

d−Dn
e−λ +

d− s

d−Dn

)|Ĵ |
.

Denoting η̂ = (s−Dn)/(d−Dn) ∈ [0, 1] and recalling that |Ĵ | ⩾ 0.48d by (96), we deduce that,
for every λ ∈ R+ (using that 1− η̂ + η̂e−λ ∈ [0, 1]),

logE
[
exp

(
− λ|Ĵ ∩ σ̃|

)∣∣X1, . . . , Xn

]
⩽ 0.48d log

(
1− η̂ + η̂e−λ

)
⩽ 0.48 d η̂ (e−λ − 1) .

Now under E and recalling that s ⩾ 36, we have

d η̂ = d · s−Dn

d−Dn
⩾ s− s+ 2e− 1

2
=
s− (2e− 1)

2
⩾ 0.43s ,

so that logE[exp(−λ|Ĵ ∩ σ̃|)] ⩽ 0.2s(e−λ − 1). By a standard argument [BLM13, p. 23], this
implies the following tail bound: for every s′ ∈ (0, s/10),

P
(
|Ĵ ∩ σ̃| ⩽ s′

∣∣X1, . . . , Xn

)
⩽ exp

(
−D(s′, s/5)

)
.

In particular,

P
(
|Ĵ ∩ σ̃| ⩽ s

10

∣∣∣X1, . . . , Xn

)
⩽ exp

(
− 1− log 2

10
s
)
⩽ e−s/35 .

Plugging this into the lower bound (97) shows that, under the event E,

P
(
KL(Pσ, P̂n) ⩾

s

40e2n
log

(
ed

s

) ∣∣∣∣X1, . . . , Xn

)
⩾ 1− e−s/35 . (98)

Note that this lower bound also holds in the case where α̂ ⩾
√
sd/20 due to (94).

Conclusion of the proof. Using the identity (93) together with the conditional lower bound (98)
under E, as well as the bound P(Ec) ⩽ e−s/2e + (2e)−n ⩽ 2e−s/2e established above, we get

Eσ∼π

[
P
(
KL(Pσ, P̂n) ⩾

s log(ed/s)

40e2n

∣∣∣∣σ)]
⩾ E

[
P
(
KL(Pσ, P̂n) ⩾

s log(ed/s)

40e2n

∣∣∣∣X1, . . . , Xn

)
1E

]
⩾ P(E) ·

(
1− e−s/35

)
⩾

(
1− 2e−s/2e

)(
1− e−s/35

)
⩾ 1− 3e−s/35 . (99)
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Since maxσ∈S{· · ·} ⩾ Eσ∼π[· · · ], it follows from (99) that there exists σ ∈ S such that

PPσ

(
KL(Pσ, P̂n) ⩾

s log(ed/s)

40e2n

)
⩾ 1− 3e−s/35 .

The lower bound of Proposition 1 follows by further bounding 40e2 ⩽ 300.

7.4 Proof of Corollary 1

Fix Φ = Φs,δ. By Lemma 1, there exists P ∈ F ⊂ P2,d ⊂ Ps,d such that

PP

(
KL(P, P̂n) ⩾

log(d) log(1/δ)

14n

)
⩾ δ . (100)

On the other hand, by Proposition 1, there exists a distribution P ∈ Ps,d such that

PP

(
KL(P, P̂n) ⩾

s log(ed/s)

300n

)
⩾ 1− 3e−s/35 .

Now, if s ⩾ 42, then 1 − 3e−s/35 > e−2 ⩾ δ; on the other hand, if 2 ⩽ s ⩽ 41 then (using that
d ⩾ 55s ⩾ 41)

log(d) log(1/δ)

14n
⩾

3 log(d)

14n
⩾

2 · 41 log(ed/41)
14 · 41n

⩾
2 · s log(ed/s)

574n
⩾
s log(ed/s)

300n
.

Hence, using the previous inequalities, we deduce that regardless of s ⩾ 2, there exists P ∈ Ps,d

such that
PP

(
KL(P, P̂n) ⩾

s log(ed/s)

300n

)
⩾ δ . (101)

Taking the best of the two lower bounds (100) and (101), we obtain that under some P ∈ Ps,d,
with probability at least δ one has

KL(P, P̂n) ⩾ max

{
s log(ed/s)

300n
,
log(d) log(1/δ)

14n

}
⩾

20

21

s log(ed/s)

300n
+

1

21

log(d) log(1/δ)

14n
⩾
s log(ed/s) + log(d) log(1/δ)

320n
.

8 Proof of Theorem 6

We now provide the proof of Theorem 6. First, note that if δ ⩽ e−n/6, then the right-hand side
of (42) is greater than 1, hence the inequality holds. We now assume that δ ∈ (e−n/6, 1).

Poisson sampling. As before, we let (Xi)i⩾1 denote an i.i.d. sequence from P , and N be
an independent random variable with distribution Poisson(n/2). In addition, we let Ñj =∑

1⩽i⩽N 1(Xi = j). We work under the event E = {N ⩽ n}, such that P(E) ⩾ 1−e−n/6 ⩾ 1−δ
(inequality (74)), and under which Ñj ⩽ Nj for 1 ⩽ j ⩽ d. Thus, letting λj = npj we have
under E that

Un ⩽
∑

j : pj<1/n

pj +
∑

j : pj⩾1/n

pj1
(
Nj ⩽

npj
4

)
⩽

∑
j : pj<1/n

pj +
1

n

∑
j : λj⩾1

λj1
(
Ñj ⩽

λj
4

)
. (102)

Also, recall that Ñ1, . . . , Ñd are independent, with Ñj ∼ Poisson(λj/2) for j = 1, . . . , d. We
therefore need to control the last term in (102).

42



Multi-scale decomposition and domination. We collect terms in the sum as follows:∑
j : λj⩾1

λj1
(
Ñj ⩽

λj
4

)
=

∑
k⩾0

∑
j : 2k⩽λj<2k+1

λj1
(
Ñj ⩽

λj
4

)
⩽

∑
k⩾0

2k+1
∑

j : 2k⩽λj<2k+1

1
(
Ñj ⩽

λj
4

)
.

Now since P(Ñj ⩽ λj/4) ⩽ e−λj/14, the (Bernoulli) random variable 1(Ñj ⩽ λj/4) is stochasti-
cally dominated by P ′

j ∼ Poisson(e−λj/14). By choosing (P ′
j)1⩽j⩽d to be independent, we deduce

from Lemma 18 that, for every k ∈ N,∑
j : 2k⩽λj<2k+1

1
(
Ñj ⩽

λj
4

)
≼ P ′′

k =
∑

j : 2k⩽λj<2k+1

P ′
j .

Note that the random variables (P̃ ′′
k )k⩾0 are independent. In addition, P ′′

k follows a Poisson
distribution with parameter

∑
j : 2k⩽λj<2k+1 e−λj/14 ⩽ d′ke

−2k/14 where d′k = |{1 ⩽ j ⩽ d : 2k ⩽

j < 2k+1}|. Let (Pk)k⩾0 be independent random variables, with Pk ∼ Poisson(d′ke
−2k/14). The

previous inequalities imply that∑
j : λj⩾1

λj1
(
Ñj ⩽

λj
4

)
≼

∑
k⩾0

2k+1Pk . (103)

Control for individual scales. The following key lemma controls the tails of individual scales
in the sum (103).

Lemma 13. For every k ∈ N and t ⩾ 0, one has

P
(
2kPk ⩾ 56d′ke

−2k/56 + 28et
)
⩽ e−t . (104)

Proof. Since Pk ∼ Poisson(d′ke
−2k/14), the Poisson tail bound (Lemma 17) implies that for any

u ⩾ d′ke
−2k/28,

P
(
Pk ⩾ eu

)
⩽ exp

{
−D

(
eu, d′ke

−2k/14
)}
.

Now since eu/(d′ke
−2k/14) ⩾ e(d′ke

−2k/28)/(d′ke
−2k/14) ⩾ e·e2k/28, and sinceD(p, q) ⩾ e−1p log(p/q)

when p ⩾ eq (Lemma 15), the previous bound implies that

P
(
Pk ⩾ eu

)
⩽ exp

{
− e−1 · eu log

(
e · e2k/28

)}
⩽ exp

{
− 2ku

28

}
.

Hence, letting u = 4t/2k, the inequality

P
(
2kPk ⩾ 4et

)
= P

(
Pk ⩾ eu

)
⩽ exp

{
− 2ku

28

}
⩽ e−t/7 (105)

holds for every t ⩾ 2kd′ke
−2k/28/4. Since

2k · d′ke−2k/28

4
⩽

56e−1e2
k/56 · d′ke−2k/28

4
= 14e−1d′ke

−2k/56 = t0 ,

the bound (105) holds for any t ⩾ t0. Thus, for any t ⩾ 0,

P
(
2kPk ⩾ 4e(t0 + 7t)

)
⩽ e−(t0+7t)/7 ⩽ e−t ,

which is precisely the claimed inequality (104).
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Lemma 13 states that 2kPk is stochastically dominated by 56d′ke
−2k/56+28eEk, where Ek ∼

Exp(1) is an exponential random variable. In addition, since λj = npj ⩽ n for j = 1, . . . , d, we
have d′k = 0 (and thus Pk = 0) for k > log2 n. Thus, letting (Ek)k∈N be independent exponential
random variables, inequality (103) implies that∑

j : λj⩾1

λj1
(
Ñj ⩽

λj
4

)
≼ 112

∑
0⩽k⩽log2 n

d′ke
−2k/56 + 56e

∑
0⩽k⩽log2 n

Ek . (106)

In addition, the first term in the r.h.s. of (106) is controlled by cs◦n/112 for some constant c
(see below). The second term may also be controlled using a deviation bound for sums of
exponential random variables (that is, gamma random variables) [BLM13, p. 28], which gives,
with probability 1− δ, ∑

0⩽k⩽log2 n

Ek ≲ log n+ log(1/δ) .

While already non-trivial and in fact near-optimal, the resulting bound on the missing mass
features an additional log n term, which is suboptimal in some (rather extreme) cases.

In order to address this sub-optimality, we need to account more carefully for the contribution
of certain scales to the sum

∑
k⩾0 2

kPk.

Accounting for “rarely contributing” scales. We now define two types of “scale indices”
k ∈ N. Specifically, we let

A =
{
k ∈ N : d′ke

−2k/56 ⩾ e
}
. (107)

Intuitively speaking, since E[Pk] = d′ke
−2k/14, the scale indices k ∈ A are those for which Pk is

often larger than 1, i.e. non-zero—with the technical caveat that we have changed the exponent
in (107). On the contrary, indices k ∈ N \ A are those for which typically Pk = 0. However,
given that there may be several such terms and that we account for low-probability events, some
of these terms may be positive with small probability. Hence, they may contribute to the sum,
especially if their coefficient 2k is large. Thus, they should also be accounted for.

In what follows, we separately account for the contribution of indices k ∈ A and k ̸∈ A. First
recall that, by Lemma 13, for any k ∈ N one has

2kPk ≼ 56d′ke
−2k/56 + 28eEk (108)

where (Ek)k∈N are i.i.d. exponential random variables.
We also recall (see [BLM13, p. 28]) that for any δ ∈ (0, 1) and finite subset B ⊂ N, with

probability 1− δ one has∑
k∈B

Ek < |B|+
√
2|B| log(1/δ) + log(1/δ) ⩽ 2|B|+ 2 log(1/δ) . (109)

When k ∈ A, one has d′ke
−2k/56 ⩾ e, hence (108) gives

2kPk ≼ 56d′ke
−2k/56 + 56e+ 28e(Ek − 2) ⩽ 112d′ke

−2k/56 + 28e(Ek − 2) . (110)

Now applying the tail bound (109) to B = A (which is finite since |A| ⩽ log2 n), we obtain with
probability 1− δ, ∑

k∈A
(Ek − 2) < 2|A|+ 2 log(1/δ)− 2|A| = 2 log(1/δ) ,
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which combined with (110) (and Lemma 18) gives

P
(∑

k∈A
2kPk ⩾ 112

∑
k∈A

d′ke
−2k/56 + 56e log(1/δ)

)
⩽ δ . (111)

We now turn to the case k ̸∈ A, in which case d′ke
−2k/56 < e. Using that if P ∼ Poisson(λ)

then P(P ̸= 0) = 1− e−λ ⩽ λ, this implies that

P(Pk ̸= 0) ⩽ d′ke
−2k/14 = (d′ke

−2k/56)e−2k3/56 ⩽ e · e−2k/19 .

Now, let k∗ = ⌈19 log(1/δ)⌉ ⩽ 20 log(1/δ) (as δ ⩽ e−1), so that e−2k
∗
/19 ⩽ δ. Using the previous

inequality, we may bound

P
( ∑

k ̸∈A, k⩾k∗

2kPk ̸= 0

)
⩽

∑
k ̸∈A, k⩾k∗

P(Pk ̸= 0) ⩽
∑
k⩾k∗

e · e−2k/19

= e
∑
l⩾0

e−2l2k
∗
/19 ⩽ e

∑
l⩾0

(
e−2k

∗
/19

)l+1

⩽ e
∑
l⩾0

δl+1 =
eδ

1− δ
⩽

e

1− e−1
δ ,

so that
P
( ∑

k ̸∈A, k⩾k∗

2kPk ̸= 0

)
⩽ 5δ . (112)

Finally, it remains to control indices 0 ⩽ k < k∗ such that k ̸∈ A. For this, we combine the
domination (108) with the tail bound (109) to obtain:

P
( ∑

k ̸∈A, k<k∗

2kPk ⩾ 56
∑

k ̸∈A, k<k∗

d′ke
−2k/56 + 56e{k∗ + log(1/δ)}

)
⩽ δ .

Since k∗ ⩽ 20 log(1/δ), we conclude that

P
( ∑

k ̸∈A, k<k∗

2kPk ⩾ 56
∑

k<k∗, k ̸∈A
d′ke

−2k/56 + 1176e log(1/δ)

)
⩽ 7δ . (113)

Combining inequalities (111), (112) and (113) through a union bound to control the sum of the
three terms, we obtain

P
(∑

k⩾0

2kPk ⩾ 168
∑
k⩾0

d′ke
−2k/56 + 1232e log(1/δ)

)
⩽ 7δ .

Conclusion. Together with inequality (103), the previous bound implies that

P
( ∑

j : λj⩾1

λj1
(
Ñj ⩽

λj
4

)
⩾ 336

∑
k⩾0

d′ke
−2k/56 + 2464e log(1/δ)

)
⩽ 7δ .

Now, by definition of d′k one has∑
k⩾0

d′ke
−2k/56 =

∑
k⩾0

∑
j : 2k⩽npj<2k+1

e−2k/56

⩽
∑
k⩾0

∑
j : 2k⩽npj<2k+1

e−npj/112 =
∑

j : pj⩾1/n

e−npj/112 .
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Plugging the previous inequalities into the decomposition (102) (which holds except for an event
of probability at most δ), we get that with probability at least 1− 8δ,

Un <
1

n

[ ∑
j : pj<1/n

(npj) + 336
∑

j : pj⩾1/n

e−npj/112 + 2464e log(1/δ)

]

⩽
336 s◦n/112(P ) + 2500e log(1/δ)

n
.

9 Proof of Proposition 2

Let Xn+1 be a new observation from P , independent from X1, . . . , Xn. For j = 1, . . . , d, denote
by Ñj =

∑n+1
i=1 1(Xi = j) the count of class j and by D̃ =

∑d
j=1 1(Ñj ⩾ 1) the number of

distinct classes in the extended sample (X1, . . . , Xn+1). Also, let Ñ = (Ñj)1⩽j⩽d. Since the
joint distribution of (X1, . . . , Xn+1) is exchangeable (and permuting indices does not change
Ñ), for every j = 1, . . . , d and i = 1, . . . , n one has P(Xn+1 = j|Ñ) = P(Xi = j|Ñ); hence,

P(Xn+1 = j|Ñ) =
1

n+ 1

n∑
i=1

P(Xi = j|Ñ) =
1

n+ 1
E
[ n+1∑

i=1

1(Xi = j)
∣∣∣Ñ]

=
E[Ñj |Ñ ]

n+ 1
=

Ñj

n+ 1
. (114)

Now, observe that for any probability distribution Q ∈ Pd, one has KL(P,Q) = L(Q) − L(P ),
where L(Q) = E[ℓ(Q,X)] with X ∼ P , and where ℓ stands for the logarithmic loss ℓ(Q, x) =
− logQ({x}). In addition, since P̂ ad

n is independent of Xn+1 one has

E[ℓ(P̂ ad
n , Xn+1)] = E

[
E[ℓ(P̂ ad

n , Xn+1)|P̂ ad
n ]

]
= E[L(P̂ ad

n )] .

On the other hand, let P̃ = (p̃j)1⩽j⩽d denote the maximum likelihood distribution on the
extended sample (X1, . . . , Xn+1), defined by

P̃ = argmin
P ′∈Pd

{
1

n+ 1

n+1∑
i=1

ℓ(P ′, Xi)

}
.

It is a standard fact that P̃ is the empirical distribution, namely p̃j = Ñj/(n+ 1). In addition,
by definition of P̃ , one has

L(P ) = E
[

1

n+ 1

n+1∑
i=1

ℓ(P,Xi)

]
⩾ E

[
1

n+ 1

n+1∑
i=1

ℓ(P̃ ,Xi)

]
= E

[
ℓ(P̃ ,Xn+1)

]
,

where the last step used the fact that the distribution of the vector (X1, . . . , Xn+1) is invariant
under permutation, and that P̃ is also invariant under permutation. Putting the previous
inequalities together gives:

E
[
KL(P, P̂ ad

n )
]
= E

[
L(P̂ ad

n )
]
− L(P ) ⩽ E

[
ℓ(P̂ ad

n , Xn+1)− ℓ(P̃ ,Xn+1)
]
. (115)
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Recall that p̂j = (Nj +Dn/d)/(n+Dn) while p̃j = Ñj/(n+ 1). It then follows from (115) that

E
[
KL(P, P̂ ad

n )
]
⩽ E

[ d∑
j=1

{
ℓ(P̂ ad

n , Xn+1)− ℓ(P̃ ,Xn+1)
}
1(Xn+1 = j)

]

= E
[ d∑

j=1

log

(
Ñj/(n+ 1)

(Nj +Dn/d)/(n+Dn)

)
1(Xn+1 = j)

]

= E
[ d∑

j=1

log

(
Ñj

Nj +Dn/d

)
1(Xn+1 = j) + log

(n+Dn

n+ 1

)]

⩽ E
[ d∑

j=1

E
[
log

(
Ñj

Ñj − 1 +Dn/d

)
1(Xn+1 = j)

∣∣∣Ñ]]
+

E[Dn]− 1

n+ 1
, (116)

where in the last inequality we used that if Xn+1 = j, then Nj = Ñj − 1, and that log[(n +
Dn)/(n+ 1)] = log[1 + (Dn − 1)/(n+ 1)] ⩽ (Dn − 1)/(n+ 1).

Consider first the case where Ñj = 1. In this case and if Xn+1 = j, then Dn = D̃ − 1 (since
Xn+1 = j does not appear in the first n observations) and hence:

E
[
log

(
Ñj

Ñj − 1 +Dn/d

)
1(Xn+1 = j)

∣∣∣Ñ]
= E

[
log

(
1

(D̃ − 1)/d

)
1(Xn+1 = j)

∣∣∣Ñ]
= log

( d

D̃ − 1

)
· P

(
Xn+1 = j|Ñ

)
=

1

n+ 1
log

( d

D̃ − 1

)
(117)

where we used (114) (and Ñj = 1) in the last equality.
Consider now the case Ñj ⩾ 2. We then bound

E
[
log

(
Ñj

Ñj − 1 +Dn/d

)
1(Xn+1 = j)

∣∣∣Ñ]
⩽ E

[
log

(
Ñj

Ñj − 1

)
1(Xn+1 = j)

∣∣∣Ñ]
= log

(
Ñj

Ñj − 1

)
· P(Xn+1 = j|Ñ)

=
Ñj

n+ 1
· log

(
Ñj

Ñj − 1

)
⩽

log 4

n+ 1
; (118)

in the last inequality, we used that the function ϕ : t 7→ t log[t/(t− 1)], such that

ϕ′(t) = log[t/(t− 1)] + t[1/t− 1/(t− 1)] = log[1 + 1/(t− 1)]− 1/(t− 1) ⩽ 0

for t > 1, is decreasing, so that ϕ(Ñj) ⩽ ϕ(2) = 2 log 2 = log 4.
Denote now by C̃1 =

∑d
j=1 1(Ñj = 1) and C̃2 =

∑d
j=1 1(Ñj ⩾ 2), so that D̃ = C̃1 + C̃2.

Plugging the bounds (117) and (118) into inequality (116), we obtain (using that if Ñj = 0, then
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1(Xn+1 = j) = 0):

E
[
KL(P, P̂ ad

n )
]

⩽ E
[ d∑

j=1

E
[
log

(
Ñj

Ñj − 1 +Dn/d

)
1(Xn+1 = j)

∣∣∣Ñ]{
1(Ñj = 1) + 1(Ñj ⩾ 2)

}]
+

E[Dn]− 1

n+ 1

⩽ E
[ d∑

j=1

1

n+ 1
log

( d

D̃ − 1

)
1(Ñj = 1) +

d∑
j=1

log 4

n+ 1
1(Ñj ⩾ 2)

]
+

E[Dn]− 1

n+ 1

⩽
1

n+ 1
E
[
C̃1 log

( d

D̃ − 1

)
+ C̃2 log 4 +Dn − 1

]
⩽

1

n+ 1
E
[
C̃1 log

( ed
C̃1

)
+ C̃2 log 4 +Dn − 1

]
.

(In the last bound, we have used that if D̃ = 1, then only one class appears n+1 > 1 times, hence
C̃1 = 0 and the first term vanishes; on the other hand, if D̃ ⩾ 2, then D̃ − 1 ⩾ D̃/e ⩾ C̃1/e.)

By concavity of the map x 7→ −x log x on R∗
+, we deduce that

EP

[
KL(P, P̂ ad

n )
]
⩽

1

n+ 1

{
EP [C̃1] log

( ed

EP [C̃1]

)
+ EP [C̃2] log 4 + EP [Dn]− 1

}
. (119)

Now, note that (using Lemma 2 for the last inequality)

EP [C̃1] =
d∑

j=1

P(Ñj = 1) =
d∑

j=1

npj(1− pj)
n ⩽

d∑
j=1

npje
−npj = s•n(P ) ⩽ 2s◦n/2(P ) ,

and in addition EP [C̃2] ⩽ EP [Dn] ⩽ sn = sn(P ). Thus

EP [C̃1] log
( ed

EP [C̃1]

)
+ EP [C̃2] log 4 + EP [Dn]

⩽ 2s◦n/2 log
( ed

s◦n/2

)
+ EP [C̃1 + C̃2] log 4 + EP [Dn]

⩽ 2s◦n/2 log
( ed

s◦n/2

)
+ (1 + log 4)sn .

Plugging this inequality into (119), and using that the map x 7→ x log(ed/x) is increasing over
[0, d], leads to the desired bound (32).

10 Technical lemmata

In this section, we gather simple technical results that are used at various places in the proofs.

Lemma 14. Define the function h : R+ → R+ by h(t) = t log t− t+ 1 for t > 0, and h(0) = 1.
Then h is continuous and convex on R+. In addition, h(t) ⩽ t log t for t ⩾ 1, while h(t) ⩾
e−1t log t for t ⩾ e. Finally, h(t) ⩽ (t− 1)2 for any t ∈ R+.

Proof. Continuity of h is straightforward, while convexity comes from the fact that h′′(t) =
1/t > 0 for t > 0. The inequality h(t) ⩽ t log t for t ⩾ 1 is immediate. We now turn to the lower
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bound h(t) ⩾ e−1t log t for t ⩾ e. By convexity of the map t 7→ t log t over R∗
+, the quantity

t log(t)/(t− 1) increases in t, thus for t ⩾ e one has t log(t)/(t− 1) ⩾ e/(e− 1), hence

h(t) = t log t− (t− 1) ⩾
(
1− e− 1

e

)
t log t = e−1t log t .

We conclude with the proof of the bound h(t) ⩽ (t−1)2. To this end, let f(t) = h(t)/(t−1)2

for t ∈ R+\{1}, and f(1) = 1/2. It is easily verified that f is continuous on R+ and differentiable
on R+ \ {1}. In addition, f ′(t) = g(t)/(t − 1)3 where g(t) = 2(t − 1) − (t + 1) log t for t > 0.
One has g′(t) = −(t−1 − 1− log(t−1)) ⩽ 0, and since g(1) = 0, this implies that g ⩽ 0 on (0, 1]
while g ⩾ 0 on [1,+∞). Therefore f ′(t) = g(t)/(t− 1)3 ⩽ 0 for any t ∈ R+ \ {1} and thus f is
decreasing on R+. We conclude by noting that limt→0+ f(t) = 1, so that f ⩽ 1 on R∗

+.

Lemma 15. For any p ∈ R∗
+, the function q 7→ D(p, q) is strictly convex on R∗

+, and reaches
its minimum (equal to 0) at q = p. Hence, it is decreasing on (0, p] and increasing on [p,+∞).
In addition, D(p, q) ⩽ p log(p/q) when q ⩽ p, and D(p, q) ⩾ e−1p log(p/q) when q ⩽ p/e.

Proof. The claims on convexity and monotonicity follow from the fact that ∂D
∂q (p, q) = −p

q + 1

(which cancels out at q = p) and ∂D
∂q (p, q) = p

q2
> 0. The inequalities on D follow from the

expression D(p, q) = qh(p/q) and from Lemma 14.

Lemma 16. Let P = (p1, . . . , pd) ∈ Pd and Q = (q1, . . . , qd) ∈ Pd. For any subset J ⊂ [d], we
have

KL(P,Q) ⩾ D

(∑
j∈J

pj ,
∑
j∈J

qj

)
. (120)

Proof. We may assume, without loss of generality, that qj > 0 for any j ∈ J . Indeed, either
there exists a j ∈ J such that qj = 0 and pj > 0, in which case the left-hand side of (120) is
+∞ and the inequality holds; or, for any j ∈ J such that qj = 0, one has pj = 0: but in this
case replacing J by J ′ = {j ∈ J : qj > 0} does not affect the right-hand side of (120).

Next, if J = ∅, the right-hand side of (120) is 0, thus the inequality holds. We now also
assume that J ̸= ∅. Then, by non-negativity and convexity of the function h (Lemma 14), we
have

KL(P,Q) =
d∑

j=1

D(pj , qj) ⩾
∑
j∈J

qjh
(pj
qj

)
=

(∑
j∈J

qj

)∑
j∈J

qj∑
k∈J qk

h
(pj
qj

)
⩾

(∑
j∈J

qj

)
h

(∑
j∈J

qj∑
k∈J qk

· pj
qj

)
= D

(∑
j∈J

pj ,
∑
j∈J

qj

)
.

We also recall the following standard Poisson tail bound (e.g., [BLM13, p. 23]):

Lemma 17. Let λ ∈ R+ and N ∼ Poisson(λ). For any µ ∈ R+ such that µ ⩾ λ, one has

P(N ⩾ µ) ⩽ exp(−D(µ, λ)) . (121)

In addition, for any µ ∈ R+ such that µ ⩽ λ, one has

P(N ⩽ µ) ⩽ exp(−D(µ, λ)) . (122)

Definition 4. Let X,Y be real random variables. We say that X is stochastically dominated
by Y , denoted X ≼ Y , if P(X ⩾ t) ⩽ P(Y ⩾ t) for every t ∈ R.
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Lemma 18. Let X1, . . . , Xn and Y1, . . . , Yn be independent real random variables, such that
Xi ≼ Yi for i = 1, . . . , n. Then

∑n
i=1Xi ≼

∑n
i=1 Yi.

Proof. For i = 1, . . . , n, let Fi(t) = P(Xi ⩽ t) be the cumulative distribution function (c.d.f.) of
Xi, and F+

i (u) = inf{t ∈ R : Fi(t) ⩾ u} for u ∈ (0, 1) be its right-continuous inverse. Likewise,
for i = 1, . . . , n, let Gi be the c.d.f. of Yi and G+

i its right-continuous inverse. Since Xi ≼ Yi, we
have Fi ⩾ Gi and thus F+

i ⩽ G+
i .

Now, let U1, . . . , Un be independent random variables that are uniformly distributed on [0, 1].
Then (F+

i (Ui))1⩽i⩽n has the same distribution as (Xi)1⩽i⩽n, while (G+
i (Ui))1⩽i⩽n has the same

distribution as (Yi)1⩽i⩽n, thus for any t ∈ R,

P
(
X1 + · · ·+Xn ⩾ t

)
= P

(
F+
1 (U1) + · · ·+ F+

n (Un) ⩾ t
)

⩽ P
(
G+

1 (U1) + · · ·+G+
n (Un) ⩾ t

)
= P

(
Y1 + · · ·+ Yn ⩾ t

)
.

Hence X1 + · · ·+Xn ≼ Y1 + · · ·+ Yn.

We will also use the following concentration inequality, due to Ben-Hamou, Boucheron, and
Ohannessian [BHBO17], for the number Dn =

∑d
j=1 1(Nj ⩾ 1) of distinct classes in the sample.

Lemma 19. Let s′n = s′n(P ) = EP [Dn] =
∑d

j=1{1− (1− pj)
n}. For any s ∈ R+, the following

holds: if s > s′n, then
PP (Dn ⩾ s) ⩽ exp(−D(s, s′n)) ; (123)

in addition, if s < s′n, then
PP (Dn ⩽ s) ⩽ exp(−D(s, s′n)) . (124)

Finally, for every δ ∈ (0, 1),

PP

(
Dn ⩾ 2

{
s′n + log(1/δ)

})
⩽ δ . (125)

Proof. Applying [BHBO17, Proposition 3.4] with r = 1 gives, for any θ ∈ R,

logE
[
eθ(Dn−s′n)

]
⩽ s′n(e

θ − θ − 1) .

Applying the standard Chernoff method to this Poisson-type moment generating function gives
the tail bounds (123) and (124) (see, e.g., [BLM13, p. 23]). To obtain the bound (125), further
relax the m.g.f. bound above by noting that for θ ∈ (0, 1), one has eθ − θ − 1 =

∑
k⩾2

θk

k! ⩽∑
k⩾2

θk

2 = θ2

2(1−θ) , and apply the sub-gamma tail bound [BLM13, p. 29] to conclude that, with
probability at least 1− δ,

Dn < s′n +
√
2s′n log(1/δ) + log(1/δ) ⩽ 2

(
s′n + log(1/δ)

)
.

This concludes the proof.

Finally, the following lemma was used in the proof of the decomposition of Lemma 3.

Lemma 20. Let C ⩾ 4, and define ϕ(t) = (t log t− t+ 1)/(
√
t− 1)2 for t ∈ R+ \ {1}, extended

by continuity by ϕ(1) = 2. For every p, q ∈ R+ such that q ⩾ p/C, one has

(
√
p−√

q)2 ⩽ D(p, q) ⩽ ϕ(C)(
√
p−√

q)2 ⩽ 4 log(C)(
√
p−√

q)2 . (126)
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Proof. If q = 0, then by assumption p = 0 as well, hence all terms in (126) are equal to 0
and the inequalities hold; the same holds when p = q. We thus assume q > 0 and p ̸= q. In
this case, we have D(p, q)/(

√
p − √

q)2 = ϕ(p/q). Now, a direct computation shows that the
map t 7→ ϕ(t2) is continuously differentiable on R∗

+, with derivative t 7→ 2(t − 1)−3ψ(t) where
ψ(t) = t2 − 2t log t − 1. Since ψ′(t) = 2(t − 1 − log t) ⩾ 0 for any t > 0, the function ψ is
non-decreasing, and since ψ(1) = 0 we deduce that ψ ⩽ 0 on (0, 1] and ψ ⩾ 0 on [1,+∞). Hence
d
dtϕ(t

2) = 2(t − 1)−3ψ(t) ⩾ 0 for any t > 0, t ̸= 1, thus by continuity of ϕ at 0 and 1, the
function ϕ is non-decreasing on R+.

Since ϕ(0) = 1 and 0 ⩽ p/q ⩽ C, we deduce that (
√
p−√

q)2 ⩽ D(p, q) ⩽ ϕ(C)(
√
p−√

q)2.
Finally, since C ⩾ 4 we have

ϕ(C) =
C logC − C + 1

C(1− 1/
√
C)2

⩽
C logC

C(1− 1/
√
4)2

= 4 logC ,

which concludes the proof.
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