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Abstract

Logistic regression is a classical model for describing the probabilistic dependence of
binary responses to multivariate covariates. We consider the predictive performance of the
maximum likelihood estimator (MLE) for logistic regression, assessed in terms of logistic
risk. We consider two questions: first, that of the existence of the MLE (which occurs when
the dataset is not linearly separated), and second that of its accuracy when it exists. These
properties depend on both the dimension of covariates and on the signal strength. In the case
of Gaussian covariates and a well-specified logistic model, we obtain sharp non-asymptotic
guarantees for the existence and excess logistic risk of the MLE. We then generalize these
results in two ways: first, to non-Gaussian covariates satisfying a certain two-dimensional
margin condition, and second to the general case of statistical learning with a possibly
misspecified logistic model. Finally, we consider the case of a Bernoulli design, where the
behavior of the MLE is highly sensitive to the parameter direction.
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1 Introduction

Logistic regression [Ber44, MN89] is a classical model describing the dependence of binary out-
comes on multivariate features. In this work, we investigate the predictive performance of the
most standard method for fitting this model, namely the maximum likelihood estimator (MLE).
Our emphasis is placed on the dependence of the estimation error on the various parameters of
the problem, as well as on the conditions under which the MLE performs well.

1.1 Problem setting and main questions

To set the stage for the discussion, we start by recalling the definition of the logistic (logit)
model. Given a dimension d ⩾ 1, the logistic model is the family of conditional distributions on
the outcome y ∈ {−1, 1} given the covariates x ∈ Rd defined by:

Plogit =
{
pθ : θ ∈ Rd

}
, where pθ(y|x) = σ(y⟨θ, x⟩) for (x, y) ∈ Rd × {−1, 1} , (1)

where we let σ(s) = es/(es + 1) for s ∈ R be the sigmoid function, and where ⟨·, ·⟩ denotes the
usual scalar product on Rd. We say that a random pair (X,Y ) on Rd × {−1, 1} follows the
logistic model if the conditional distribution of Y given X belongs to Plogit.

In short, the logistic model is appealing because it constitutes a natural “linear” model for
binary outcomes: indeed, the conditional probability P(Y = 1|X = x) is obtained by applying
the link function σ : R → [0, 1] to a linear function of x. Note that the specific choice of the link
function σ in the logistic model is not arbitrary: it corresponds to the “canonical link function”
for the Bernoulli parameter, in the sense of exponential families [Bro86].

In the statistical setting, the true distribution P of the random pair (X,Y ) is unknown, but
one has access to a sample (X1, Y1), . . . , (Xn, Yn) of i.i.d. random variables with distribution P .
Using this sample, one can compute the MLE, defined by

θ̂n = argmax
θ∈Rd

n∏
i=1

pθ(Yi|Xi) = argmin
θ∈Rd

n∑
i=1

log
(
1 + e−Yi⟨θ,Xi⟩

)
. (2)

In this work, we will be concerned with the following two questions:

1. Existence: When does the MLE exist?

2. Performance: When the MLE exists, how accurate is it?

To make these two questions precise, some discussion is in order.
First, we must clarify the geometric meaning of existence (and uniqueness) of the MLE; we

refer to [AA84] and to the introduction of [CS20] for an interesting discussion of this point, with
thorough references. Uniqueness of the MLE is in fact a straightforward question: whenever the
points X1, . . . , Xn span Rd (a property that holds with high probability for n ≳ d, under suitable
assumptions on X), the second function in (2) that the MLE minimizes is strictly convex on
Rd, and thus admits at most one minimizer. The property of existence of the MLE has a richer
geometric content. Assume again to simplify that X1, . . . , Xn span Rd, so that for every θ ̸= 0,
there exists i ∈ {1, . . . , n} such that ⟨θ,Xi⟩ ≠ 0. Then, the MLE exists if and only if the dataset
is not linearly separated, by which we mean that there is no θ ̸= 0 such that {Xi : 1 ⩽ i ⩽ n, Yi =
1} ⊂ H+

θ = {x ∈ Rd : ⟨θ, x⟩ ⩾ 0} and {Xi : 1 ⩽ i ⩽ n, Yi = −1} ⊂ H−
θ = {x ∈ Rd : ⟨θ, x⟩ ⩽ 0}—

or, in more succinct form, if there is no θ ̸= 0 such that Yi⟨θ,Xi⟩ ⩾ 0 for every i = 1, . . . , n.
Indeed, if such a θ exists, then the second function in (2) evaluated at tθ remains upper bounded
as t → +∞; since a strictly convex function admitting a global minimizer diverges at infinity,
the objective function admits no global minimizer. Conversely, if no such θ exists, then simple
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compactness arguments show that the function in (2) diverges at infinity and is continuous,
hence admits a global minimizer.

Second, in order to assess the performance of the MLE, one must specify a notion of accuracy.
In this work, we will mainly focus on the predictive performance of the MLE, as measured by
its risk for prediction under logistic loss. Specifically, we consider the problem of assigning
probabilities to the possible values ±1 of Y , given the knowledge of the associated covariate
vector X. Each parameter θ ∈ Rd gives rise to the conditional distribution pθ defined in (1).
We can then define the logistic loss ℓ (at a point (x, y) ∈ Rd × {−1, 1}) and risk L of θ by,
respectively:

ℓ(θ, (x, y)) = − log pθ(y|x) = log(1 + e−y⟨θ,x⟩) and L(θ) = E[ℓ(θ, (X,Y ))] . (3)

Hence, the logistic loss corresponds to the negative log-likelihood (or logarithmic loss) for the
logistic model. The logarithmic loss is a classical way to assess the quality of probabilistic
forecasts: it enforces calibrated predictions by penalizing both overconfident and under-confident
probabilities. In particular, assigning a probability of 0 to a label y that does appear leads to
an infinite loss. In addition, this criterion is closely related to the MLE, which corresponds to
the minimizer of the empirical risk L̂n : Rd → R under logistic loss, defined by

L̂n(θ) =
1

n

n∑
i=1

ℓ(θ, (Xi, Yi)) =
1

n

n∑
i=1

log(1 + e−Yi⟨θ,Xi⟩) . (4)

Finally, the logistic loss also naturally arises in statistical learning theory [BBL05, Kol11, Bac24],
as a convex surrogate of the classification error [Zha04, BJM06]. With these definitions at hand,
one can measure the prediction accuracy of the MLE by its excess risk under logistic loss, namely
L(θ̂n)− L(θ∗), where θ∗ ∈ argminθ∈Rd L(θ) (assuming this set is nonempty).

Thirdly, the existence of the MLE depends on the dataset and is thus a random event, and
likewise the excess risk L(θ̂n)−L(θ∗) is a random quantity. As such, both the existence and the
accuracy of the MLE depend on the joint distribution P of (X,Y ). To give a precise meaning
to the questions above, we must therefore specify which distributions P we consider. Note that
the joint distribution P is characterized by (a) the marginal distribution PX of X, and (b) the
conditional distribution PY |X of Y given X.

We will actually consider three different settings of increasing generality, depending on the
respective assumptions on PX and PY |X , but for concreteness and in order to compare with
previous results, we will in this introduction start with the simplest one:

(a) The design follows a Gaussian distribution: X ∼ N(0,Σ) for some positive matrix Σ. By
invariance of the problem under invertible linear transformations of X, we may assume
that Σ = Id is the identity matrix, which we will do in what follows.

(b) The model is well-specified, in that the conditional distribution PY |X belongs to the logistic
model Plogit. In other words, there exists θ∗ ∈ Rd such that P(Y = 1|X) = σ(⟨θ∗, X⟩).

Besides its natural character, the appeal of this setting is that the problem only depends on a
small number of parameters. These are: the sample size n, the data dimension d, the probability
1 − δ with which the guarantees hold, and importantly the signal strength (or signal-to-noise
ratio, or inverse temperature) B = max{e, ∥θ∗∥}, where ∥ · ∥ stands for the Euclidean norm.

It is worth commenting on the role of the dimension d and of the signal strength B. Intu-
itively, there are two distinct effects that may lead the dataset to be linearly separated. First, the
larger the dimension d, the more degrees of freedom there are to linearly separate the dataset.
But another effect comes from the signal strength: the stronger the signal B, the more the
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labels Yi tend to be of the same sign as ⟨θ∗, Xi⟩—and thus, the more likely it is for the dataset
to be separated by θ∗, or by a “close” direction. As we will see, the “dimensionality” and the
“signal strength” effects interact with each other. We also note that, intuitively, a stronger signal
should make the classification problem (of predicting the value of the label Y , and minimizing
the fraction of errors) easier. This amounts to saying that the larger B is, the smaller the esti-
mation error for the direction u∗ = θ∗/∥θ∗∥ of the parameter θ∗ should be. On the other hand,
under a stronger signal, the MLE is known (see, e.g., [CS20, SC19] and references therein) to
tend to underestimate the uncertainty in the labels, that is, to return overconfident conditional
probabilities for Y given X. This holds, for instance, if the dataset is nearly linearly separated,
in which case the MLE predicts conditional probabilities close to 0 or 1. Hence, for the condi-
tional density estimation problem we consider, a stronger signal may degrade the performance
of the MLE. This should manifest itself by the fact that the norm of the MLE (as opposed to
its direction) may be far from that of θ∗, so the overall estimation error of θ∗ may be larger.

To summarize, we are interested in explicit and non-asymptotic guarantees for the existence
and accuracy of the MLE, in terms of the relevant parameters B, d, n, δ—ideally, in the general
situation where these parameters may take arbitrary values. Our aim is twofold: first, to obtain
the optimal dependence on all parameters in the case of a Gaussian design and a well-specified
model; second, to investigate to which extent these results extend to more general distributions.

1.2 Existing results

Before describing our contributions, we first provide an overview of known results on the ques-
tions we consider. As a basic statistical method, logistic regression has been studied extensively
in the literature, hence we focus on those results that are most directly relevant to our setting.
Again, for the sake of comparison, we will mainly focus on the case of a Gaussian design and a
well-specified model, although extensions will also be discussed.

1.2.1 Classical asymptotics

The behavior of the MLE is well-understood in the context of classical parametric asymp-
totics [LCY00, vdV98]. In this setting, the distribution P is fixed (and thus, so are the dimen-
sion d and signal strength B) while the sample size n goes to infinity. In this case, as n → ∞,
the MLE θ̂n exists with probability converging to 1, converges to θ∗ at a 1/

√
n rate, and is

asymptotically normal, with asymptotic covariance given by the inverse of the Fisher informa-
tion matrix [vdV98, §5.2–5.6]. This implies that the excess risk converges to 0 at a rate 1/n,
and more precisely that

2n
{
L(θ̂n)− L(θ∗)

} (d)−−→ χ2(d) , (5)

where
(d)−−→ denotes convergence in distribution and χ2(d) denotes the χ2 distribution with d

degrees of freedom. Together with a tail bound for the χ2 distribution, this implies the following:
for fixed d ⩾ 1, θ∗ ∈ Rd, and δ ∈ (0, 1), we have

lim inf
n→∞

P
(
L(θ̂n)− L(θ∗) ⩽

d+ 2 log(1/δ)

n

)
⩾ 1− δ , (6)

with the convention that L(θ̂n) − L(θ∗) = +∞ if the dataset is linearly separated. Note that
the convergence (5) holds only in the well-specified case, and that in the misspecified case the
normalized excess risk 2n{L(θ̂n) − L(θ∗)} converges to a different limiting distribution that
depends on the distribution P of (X,Y ); see [vdV98, Example 5.25 p. 55] and (for instance) the
introductions of [OB21, MG22] for additional discussions on this point.
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On the positive side, the high-probability guarantee (6) is sharp, in light of the convergence
in distribution (5) of the excess risk. On the other hand, it should be noted that this guarantee
is purely asymptotic: it holds as n → ∞ while all other parameters of the problem are fixed.
This does not allow one to handle the modern high-dimensional regime, where the dimension d
may be large and possibly comparable to n. In addition, it does not state how large the sample
size n should be (in terms of B, d, δ) for the asymptotic behavior (6) to occur—in particular, it
provides no information on the sample size required for the existence of the MLE.

High-dimensional asymptotics. Several of the shortcomings of the classical asymptotic
theory can be addressed by considering a different asymptotic framework, namely the “high-
dimensional asymptotic regime”, where d, n → ∞ while d/n converges to a fixed constant.
This framework has attracted significant interest in statistics over the last decade (see, e.g.,
[EK18b, Mon18] and references therein for a partial overview of this line of work). The interest
of this framework is that it allows one to capture high-dimensional effects, since the dimension
is no longer negligible compared to the sample size.

The question of existence of the MLE under high-dimensional asymptotics was addressed in
the seminal work of Candès and Sur [CS20], extending a previous result of Cover [Cov65] in the
“null” case where θ∗ = 0. Specifically, the main result of Candès and Sur [CS20, Theorems 1–2]
can be stated as follows1: there exists a function h : R+ → (0, 1) such that the following holds.
Fix β ∈ R+ and γ ∈ (0, 1), and let d = dn → ∞ as n→ ∞, with d/n→ γ. If X ∼ N(0, Id) and
P(Y = 1|X) = σ(⟨θ∗, X⟩), with θ∗ = θ∗d ∈ Rd such that ∥θ∗∥ = β, and the dataset consists of n
i.i.d. copies of (X,Y ), then

lim
n→∞

P(MLE exists) =

{
0 if γ > h(β)

1 if γ < h(β) .
(7)

In addition, the quantity h(β) is defined as the infimum of the expectation of an explicit family
random variables that depend on β (see eq. (2.4) in [CS20]), and the curve of the function h is
plotted numerically in this paper.

The conditions (7) provide a precise characterization of the existence of the MLE under high-
dimensional asymptotics, and in particular establish a sharp phase transition for this property,
depending on the value of the aspect ratio γ = lim d/n.

While this result conclusively answers the question of existence of the MLE in this asymp-
totic setting, it does not cover the general regime where the problem parameters may be of
arbitrary order of magnitude relative to each other. Indeed, although this regime captures high-
dimensional effects by allowing the dimension to grow with the sample size, it assumes the signal
strength B to be fixed while n → ∞. This excludes “strong signal” regimes, where the sample
size may not be large enough relative to B for the asymptotic characterization (7) to provide
an accurate approximation. As an example, a finite-sample condition of the form n ≫ exp(B)
would always be satisfied under high-dimensional asymptotics, and thus would not be visible
from results framed in this setting. In addition, the characterization (7) is a qualitative zero-one
law, stating that the considered probability converges to 0 or 1. However, one may wish for
more precise information, namely sharp quantitative estimates on the probabilities.

Finally, the characterization (7) is specific to the case of a Gaussian design, and indeed one
should expect the precise threshold for existence of the MLE to be sensitive to the distribution
of the design (see [EK18a] for results in this spirit in the case of robust regression). One may
therefore want to identify general conditions on the design distribution under which the MLE

1In fact, Theorem 1 in [CS20] deals with the case of logistic regression with an intercept, while Theorem 2
therein is concerned with logistic regression without intercept that we discuss here.
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behaves in a similar way as for Gaussian design. Likewise, the characterization (7) holds in the
well-specified case, which raises the question of existence of the MLE in the misspecified case.

These considerations motivate a finite-sample analysis that would allow one to handle gen-
eral values of the problem parameters, and extend to more general situations. We would like
however to clarify that the finite-sample results do not imply the asymptotic ones: indeed, the
non-asymptotic characterizations we will obtain feature universal constant factors (and even in
some cases logarithmic factors), while the asymptotic characterization (7) is precise down to
the numerical constants. This loss in precision may be a price to pay for a non-asymptotic
analysis in the general regime; on the positive side, it will allow us to obtain conditions that are
easier to interpret. For these reasons, we view the finite-sample and asymptotic perspectives as
complementary.

Non-asymptotic guarantees. We now discuss available non-asymptotic guarantees for the
MLE in logistic regression from the literature, focusing on those that are most relevant to our
setting. First, it follows from the results of [CLL20] (specifically, combining Theorems 1 and 8
therein) that there is a constant c > 0 such that the following holds: if n ⩾ ecBd, then with
probability 1− 2e−d/c the MLE θ̂n exists and satisfies

L(θ̂n)− L(θ∗) ⩽
ecBd

n
. (8)

On the positive side, this result is fully explicit and features an optimal dependence on the
sample size n and dimension d; the probability 1 − e−d/c under which the OB(d/n) bound
holds is also optimal, in light of the asymptotic results (5) and (6). On the other hand, the
dependence on the signal strength B is exponential, which turns out to be highly suboptimal
for a Gaussian design. In fact, the bound (8) holds in a more general setting, where the model
may be misspecified and where the design is only assumed to be sub-Gaussian. As we will
discuss below, some exponential dependence on the norm turns out to be unavoidable if one
only assumes the design distribution to be sub-Gaussian.

Up until recently, the sharpest available non-asymptotic guarantees for the MLE in logistic
regression with a Gaussian design were due to Ostrovskii and Bach [OB21]. Specifically, com-
bining Theorem 4.2 in [OB21] with Proposition D.1 therein shows that there is a constant c > 0
such that the following holds: for δ ⩽ 1/2, if n ⩾ c log4(B)B8d log(1/δ), then with probability
at least 1− δ the MLE exists and satisfies

L(θ̂n)− L(θ∗) ⩽
B3d log(1/δ)

n
. (9)

Like the bound (8), this result features an optimal dependence on the dimension d and sample size
n; and while the bound involves a deviation term d log(1/δ) proportional to the dimension (which
is suboptimal for small δ), it could be tightened to an additive deviation term d+ log(1/δ) with
very minor changes to the proof of [OB21]. Importantly, this result significantly improves over
the general bound (8) in the case of a Gaussian design, by replacing the exponential dependence
on the norm B by a polynomial one. In addition, it is worth mentioning that the result of [OB21]
holds in the general misspecified case, and that in this case it is actually the best available
guarantee in the literature. This being said, as we will see below, the polynomial dependence
on B in both the condition for existence of the MLE and in the risk bound can be improved.
For instance, in the well-specified case, the risk bound (9) is larger than the asymptotic risk (6)
by a factor of B3, which suggests possible improvements.

Recently and while this manuscript was under preparation, two additional works [KvdG23,
HM23] contributed significantly to the study of logistic regression with a Gaussian design, with
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an emphasis on the dependence on the signal strength B. Closest to our setting is the work of
Kuchelmeister and van de Geer [KvdG23], who study the MLE for logistic regression under a
Gaussian design, but assuming that the conditional distribution of Y given X follows a probit
rather than a logit model. Despite real technical differences between the probit and logit models,
this is qualitatively related to the well-specified logit model. With a natural notion of signal
strength B in the probit model (the inverse of the parameter σ in their work), Theorem 2.1.1
in [KvdG23] states that: for some absolute constant c, if n ⩾ cB(d log n + log(1/δ)), the MLE
exists and satisfies∥∥∥∥ θ̂n

∥θ̂n∥
− θ∗

∥θ∗∥

∥∥∥∥ ⩽ c

√
d log n+ log(1/δ)

Bn
,

∣∣∥θ̂n∥ − ∥θ∗∥
∣∣ ⩽ cB3/2

√
d log n+ log(1/δ)

n
. (10)

While the bound (10) controls the estimation errors on the norm and direction of the parameter,
we note that it can be equivalently restated in terms of excess logistic risk, as

L(θ̂n)− L(θ∗) ⩽ c′
d log n+ log(1/δ)

n
(11)

for some constant c′ > 0. This guarantee matches the asymptotic risk (6) up to an additional
log n factor, and as we will show below the condition for existence of the MLE from [KvdG23] is
also almost sharp up logarithmic factors. We also note that further results on linear separation
in more general contexts have been obtained by Kuchelmeister [Kuc24].

Hsu and Mazumdar [HM23] consider the problem of estimating the parameter direction
θ∗/∥θ∗∥ (which suffices for the task of classification, namely of predicting the most likely value
of Y given X, as opposed to estimating conditional probabilities), again with an emphasis on
the dependence on the signal strength B. Like [KvdG23] they consider the case of a Gaussian
design, but assume that the data follows a logit model rather than a probit model. Notably, they
consider different estimators than the MLE for logistic regression, in particular the minimizer of
a classification error. They establish upper bounds on the estimation error of the same order as
the first bound in (10), again with logarithmic factors in n. In addition, they establish minimax
lower bounds on the estimation error of θ∗/∥θ∗∥, which show that the previous upper bound is
sharp up to logarithmic factors. They also explicitly raise the question of whether or not the
MLE achieves optimal upper bounds.

While these results constitute decisive advances, they leave some important questions. First,
the guarantees feature additional logarithmic factors in the sample size, which are presumably
suboptimal but seem hard to avoid in the analyses of [KvdG23] and [HM23], leaving a gap
between upper and lower bounds. Although logarithmic factors are admittedly a mild form of
suboptimality, logistic regression with a Gaussian design is arguably a basic enough problem to
justify aiming for sharp results. Second and perhaps more importantly, these results are specific
to the case of a Gaussian design and a well-specified model, which raises the question of the
behavior of the MLE for more general design distributions or under a misspecified model.

1.3 Summary of contributions

We are now in position to provide a high-level overview of our main results; we refer to subsequent
sections for precise statements and additional comments.

Gaussian design, well-specified model. First, in the case of a Gaussian design and a well-
specified logit model, Theorem 1 provides optimal (up to absolute constants) guarantees for the
existence and accuracy of the MLE. Specifically, there exists a universal constant c such that
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the following holds: for any δ ⩽ 1/2, if n ⩽ c−1B(d+ log(1/δ)), then

P(MLE exists) ⩽ 1− δ . (12)

On the other hand, if n ⩾ cB(d+ log(1/δ)), then with probability at least 1− δ the MLE exists
and satisfies

L(θ̂n)− L(θ∗) ⩽ c
d+ log(1/δ)

n
. (13)

This removes a log n factor from the bound (11) deduced from the work of [KvdG23] in the case
of a probit model, and answers in the affirmative (after translating this risk bound into a bound
on the estimation error) a question from [HM23] on the optimality of the MLE.

In short, this result provides necessary and sufficient conditions on the sample size n (up to
numerical constant factors) for the MLE to exist with high probability, and shows that in the
regime where the MLE exists, it achieves non-asymptotically the same risk as predicted by the
asymptotic behavior (6) for fixed B, d, δ and n→ ∞.

The previous result implies in particular that, if n ≫ Bd, then the MLE exists with prob-
ability at least 1 − exp

(
− n

c′B

)
for some constant c′, and that this estimate is optimal. This

provides a quantitative version of the convergence to 1 in the phase transition (7) from Candès
and Sur [CS20]. On the other hand, in the regime where n ≪ Bd, Theorem 1 only shows that
the probability of existence of the MLE is bounded by a constant (say, 1/2), rather than con-
verging to 0 as in the phase transition (7). We therefore complement Theorem 1 by a result on
non-existence of the MLE (Theorem 2), which states that if n≪ Bd/κ for some κ ⩾ 1, then

P(MLE exists) ⩽ c exp
(
−max

{
κ
√
d, κ2d/B2

}
/c
)

(14)

for some constant c. This can be seen as a quantitative version of the convergence to 0 in the
phase transition (7) from [CS20].

Regular design, well-specified model. The previous results are specific to the case of
a Gaussian design, which can be seen as the most favorable case. This raises the following
natural question: which properties of the Gaussian distribution are responsible for the previously
described behavior of the MLE? Or equivalently, for which distributions of the design does the
MLE behave (at least in the well-specified case) similarly as for a Gaussian design?

Perhaps a natural guess is that a light-tailed design distribution would lead to a similar
behavior as a Gaussian design, and indeed this would be the case for linear regression. However,
this is far from being the case for logistic regression: as previously alluded to, if the design
distribution is only assumed to be sub-Gaussian (as in [CLL20]), then an exponential dependence
on the norm is unavoidable.

In Section 2.2, we identify suitable assumptions on the design distribution leading to a near-
Gaussian behavior. Aside from light tails (Assumption 1), the assumptions include a condition on
the behavior of one-dimensional linear projections of the design near 0 (Assumption 2), which is
related to standard margin conditions in the classification literature [MT99, Tsy04]. However, as
shown in Proposition 1, another assumption is necessary to obtain a near-Gaussian behavior (in
a suitable sense); this non-standard condition (Assumption 3) bears on two-dimensional linear
projections of the design, rather than merely its one-dimensional marginals. By analogy with
the standard (one-dimensional) margin condition, we refer to this condition as “two-dimensional
margin assumption”.

Under these regularity assumptions on the design but still in the well-specified case, Theo-
rem 3 shows that the MLE behaves similarly as in the Gaussian case, up to poly-logarithmic
factors in the norm B. Specifically, for some constant c (depending on the constants of the
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regularity conditions), if n ⩾ c log4(B)B(d + log(1/δ)), then with probability 1 − δ the MLE
exists and satisfies

L(θ̂n)− L(θ∗) ⩽ c log4(B)
d+ log(1/δ)

n
. (15)

Regular design, misspecified model. Finally, we turn to the most general setting, where
no assumption is made on the conditional distribution of Y given X; in particular, it is no
longer assumed that it belongs to the logit model. This being said, as previously discussed it
is still possible to define the minimizer θ∗ of the logistic risk, and to consider the excess risk
L(θ̂n)−L(θ∗) of the MLE, which corresponds to the empirical risk minimizer (ERM) under the
logistic loss. This corresponds to the problem of Statistical Learning under logistic loss.

As discussed in Section 1.2, in many regimes of interest the best available guarantees for
this problem in the literature are those from [OB21], namely the excess risk bound (9) of order
B3d log(1/δ)/n, when the design is Gaussian but the model may be misspecified. Theorem 4
below improves these guarantees in the following way: it shows that if the design is regular (in
the same sense as before) and n ⩾ c log4(B)(Bd+ B2 log(1/δ)), with probability at least 1− δ
the MLE exists and satisfies

L(θ̂n)− L(θ∗) ⩽ c log4(B)
d+B log(1/δ)

n
; (16)

here and as in (15), c is a constant that depends on the constants from the regularity conditions
on X. For instance, for constant δ and B ≲ d, this removes a factor of almost B3 from the
previous best guarantee (9) for statistical learning with logistic loss.

Our guarantees in the misspecified case feature a stronger dependence on the norm B than
in the well-specified case; specifically, the “deviation terms” (those that depend on the failure
probability δ) in both the condition for existence of the MLE and its excess risk bound are larger
by a factor of B. This raises the question of whether this gap is essential or an artifact of the
analysis. As it turns out, even for a Gaussian design, the guarantee (16) is best possible (up to
polylog(B) factors) in the general misspecified setting, both in the condition for existence of the
MLE and for its excess risk bound, as shown in Theorem 4.

Distributions satisfying the regularity assumptions. While identifying conditions on the
design distribution under which the MLE behaves as in the Gaussian case may be interesting
in its own right, in order for these general assumptions to constitute a genuine extension of the
Gaussian case one must exhibit other meaningful examples of distributions satisfying them.

To illustrate these conditions, in Section 3 we consider two families of distributions, namely
log-concave distributions and product measures. The log-concave case is overall similar to the
Gaussian case (which it contains as a special case), in that the regularity conditions hold for any
value of the parameter θ∗ ∈ Rd—that is, for any parameter direction u∗ = θ∗/∥θ∗∥ and signal
strength B = max{e, ∥θ∗∥}. In contrast, the case of product measures is more subtle, since the
regularity conditions are highly sensitive to the parameter direction u∗. Indeed, we show that
for designs with i.i.d. coordinates (a prototypical example being the Bernoulli design, with i.i.d.
coordinates uniform over {−1, 1}), depending on the parameter direction the MLE may behave
as in the Gaussian case either only for trivial (constant) signal strength B = O(1), or up to a
large signal strength B = O(

√
d).

1.4 Additional related work

We now survey additional relevant prior work on logistic regression, beyond the results discussed
in Section 1.2.
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Logistic regression as convex statistical learning. Logistic regression is a special case of
convex statistical learning (or convex stochastic optimization), allowing to leverage guarantees
from this setting. For instance, a standard uniform convergence argument using the Lipschitz
property of logistic loss implies an excess risk bound of order B

√
d/n for ERM over a ball of

radius O(B). This upper bound exhibits a slow convergence rate of n−1/2 as n→ ∞, as opposed
to the actual asymptotic rate of n−1.

In order to improve over the slow rate, a strengthening of mere convexity is needed, in
the form of additional assumptions on the curvature of the loss or risk. A common notion of
curvature in optimization is strong convexity [BV04, Bub15, Bac24] of the loss, however the
logistic loss is not strongly convex with respect to the regression parameter θ as it only varies in
one direction. A more appropriate notion of curvature is “exponential concavity” (exp-concavity),
which originates from online learning [Vov98, CBL06]. Using this property of logistic loss, it is
shown in [PZ23] (see also [Meh17, DVW21]) that ERM for logistic regression constrained to a ball
of radius O(B) achieves an excess risk of at most O(decBR/n), where R > 0 is such that ∥X∥ ⩽ R
almost surely. In the isotropic case where E[XX⊤] = Id, one has R ⩾ E[∥X∥2]1/2 =

√
d, hence

the previous guarantee scales at best as decB
√
d/n, with an exponential dependence on the norm

B and (square root of the) dimension d. This reflects the fact that logistic loss only possesses
very weak deterministic curvature.

Another relevant property of logistic loss is (pseudo-)self-concordance (a bound on the third
derivative of the loss in terms of the second derivative) which was put forward by [Bac10], and
used to analyze logistic regression in a series of works [Bac10, Bac14, BM13, OB21], the sharpest
results in this direction being those of Ostrovskii and Bach [OB21] discussed in Section 1.2.

Finally, a classical condition to obtain fast rates for ERM in Statistical Learning Theory
is a bound on the variance of loss differences in terms of the excess risk [Mas07, Kol11], an
assumption known as Bernstein condition [BM06]. General guarantees for ERM in statistical
learning under convex and Lipschitz loss are obtained in [ACL19] using the Bernstein condition.
These results are refined in the work [CLL20] by using a local version of this condition; we
discussed the instantiation of their results to logistic regression in Section 1.2.

High-dimensional asymptotics. As discussed in Section 1.2, Candès and Sur [CS20] char-
acterized the phase transition for existence of the MLE in the well-specified case and with
a Gaussian design in the high-dimensional asymptotic regime where d/n → γ ∈ (0, 1) and
β = ∥θ∗∥ ∈ R+ is fixed. This result on existence is complemented in [SC19] by a result on
the behavior of the MLE under the same assumptions and asymptotic regime; specifically, it is
shown in this work that the joint distribution of the true and estimated coefficients converges to
a certain distribution. These results have been extended, among others, to arbitrary covariance
matrices of the design [ZSC22], to ridge-regularized logistic regression [SAH19], to more general
binary models [TPT20], to multinomial logistic regression [TB24] and to missing data [VM24].

Worst-case design distributions, improper and robust estimators. Our focus in this
work is to characterize the performance of the MLE in “regular” situations, namely when the
design distribution satisfies some suitable conditions ensuring a near-Gaussian behavior. A
rather different but complementary perspective consists in considering the performance of the
MLE or other estimators for logistic regression under worst-case design distributions.

As one might expect, the performance of the MLE is considerably degraded for worst-case
design distributions. In particular, a lower bound from [HKL14] for statistical learning with
logistic loss implies that, when no assumption is made on the design asides from boundedness
(∥X∥ ⩽ R almost surely), then the MLE or any “proper” estimator (that returns a conditional
density belonging to the logistic model) can achieve no better expected excess risk (with respect
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to the ball of radius B) than O(BR/
√
n), as long as n ⩽ ecBR. This exponential dependence on

the parameter norm can be bypassed by resorting to “improper estimators”, that is, estimators
that return conditional densities that do not belong to the logistic model; these include Bayesian
model averaging [KN05, FKL+18, QRZ24] or adjusted estimators that account for uncertainty
using “virtual labels” [MG22, JGR20]. We also refer to [Vij21, vdHZCB23] for alternative pro-
cedures achieving sharp high-probability guarantees, albeit at a high computational cost.

A related direction is that of robust logistic regression. In [CLL20], high-probability risk
bounds in logistic loss are established for estimators based on medians-of-means, when the design
X may be heavy-tailed. In addition, estimators for logistic regression achieving near-optimal
guarantees in Hellinger distance were proposed in [BC24]. From a statistical perspective, these
estimators are more robust than the MLE; on the other hand, their computational cost appears
to be exponential in the dimension, making them less directly usable in practice.

1.5 Outline and notation

Paper outline. This paper is organized as follows. Section 2 contains the precise statements
of our main results, as well as the definition and discussion of the regularity assumptions we
consider on the design distribution. In Section 3, we illustrate these assumptions by investigating
to which extent they hold for three standard classes of design distributions. Section 4 describes
the structure of the proofs of the main results from Section 2, including statements of the main
lemmas. In particular, a convex localization argument reduces the proof of existence and risk
bounds for the MLE to two components: an upper bound on the gradient of the empirical
risk, and a uniform lower bound on the Hessian of the empirical risk in a neighborhood of the
true parameter. Section 5 is devoted to the proofs of upper bounds on the empirical gradients,
while lower bounds on the empirical Hessian are established in Section 6. Next, in Section 7
we provide the proof of Theorem 2 on linear separation (non-existence of the MLE) with high
probability. In Section 8, we conclude the proofs of the main results of Section 2 by putting
together the results of Sections 4.1, 5 and 6 and providing additional lower bounds. Finally,
Section 9 contains the proofs of results from Section 3, namely regularity of log-concave and
product measures. Appendices A and B gather technical facts on real random variables and
polar coordinates, while Appendix C contains the proof of Proposition 1 on necessity of the
two-dimensional margin condition.

Notation. Throughout the paper, the sample size will be denoted by n and the dimension
by d. We let ⟨·, ·⟩ denote the standard inner product on Rd, and ∥ · ∥ = ∥ · ∥2 the associated
Euclidean norm. We denote by Bd

2 the unit Euclidean ball and by Sd−1 the unit sphere in Rd.
For a positive semi-definite matrix A, we let ∥ · ∥A be the semi-norm induced by A, defined by
∥x∥2A = ⟨Ax, x⟩ = ∥A1/2x∥2 for x ∈ Rd. The operator norm of a matrix A is denoted by ∥A∥op.
Given two d×d symmetric matrices A,B, we write A ≼ B if ⟨Av, v⟩ ⩽ ⟨Bv, v⟩ for every v ∈ Rd.

If f : Rd → Rd is a twice continuously differentiable function, we let ∇f(x) ∈ Rd and
∇2f(x) ∈ Rd×d respectively denote its gradient and Hessian at x ∈ Rd. For a, b ∈ R we let
a ∧ b = min(a, b) and a ∨ b = max(a, b), as well as a+ = max(a, 0) and a− = max(−a, 0).

Recall the notation introduced in Section 1.1: we let (X1, Y1), . . . , (Xn, Yn) be i.i.d. pairs
having the same distribution P as a generic pair (X,Y ), and let θ̂n denote the MLE defined
by (2). Throughout, we assume without loss of generality that the design X has an isotropic
distribution, in the sense that E[XX⊤] = Id. We say that the logit model is well-specified if the
conditional distribution of Y given X belongs to the model Plogit, that is if there exists θ∗ ∈ Rd
such that P(Y = 1|X) = σ(⟨θ∗, X⟩); otherwise, the model is said to be misspecified.
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2 Main results

In this section, we provide the precise statements of our main results on logistic regression, which
we presented informally in Section 1.3.

This section is organized as follows. First, Section 2.1 contains the results in the case of
a well-specified model and a Gaussian design. In Section 2.2, we introduce and discuss the
regularity assumptions we consider on the design to generalize the Gaussian case. In Section 2.3
we extend the results of Section 2.1 to the case of a regular design, while still assuming that
the model is well-specified. Finally, in Section 2.4 we consider the most general case, where the
design is regular but no assumption is made on the conditional distribution of Y given X.

2.1 Well-specified model, Gaussian design

We start with the case of a well-specified model and a Gaussian design. Theorem 1 below
provides a sharp condition (up to universal constant factors) on the sample size n for the MLE
to exist with high-probability, as well as an optimal upper bound in deviation on its excess risk.
Its proof can be found in Section 8.2.

Theorem 1. Assume that the design X ∼ N(0, Id) is Gaussian and that the model is well-
specified with parameter θ∗ ∈ Rd, and let B = max{e, ∥θ∗∥}. There exist universal constants
c1, c2, c3 > 0 such that, for any t > 0: if

n ⩾ c1B(d+ t) , (17)

then, with probability 1− e−t, the MLE θ̂n exists and satisfies

L(θ̂n)− L(θ∗) ⩽ c2
d+ t

n
. (18)

Moreover, for any d ⩾ 53 and t ⩾ 1, if n ⩽ c3B(d + t) then the MLE exists with probability at
most 1− e−t.

It follows from Theorem 1 that, up to numerical constants, the condition (17) is both neces-
sary and sufficient for the MLE to exist with high probability, and that whenever this condition
holds, the MLE admits the same risk guarantee as the asymptotic one (6) in the regime where
B, d are fixed while n→ ∞, which is optimal in light of the convergence in distribution (5). In
particular, the condition on n that ensures that the MLE exists also ensures that it achieves its
asymptotic excess risk.

We note also that, using Lemma 3, the proof of Theorem 1 also provides guarantees for
the estimation error of the direction and norm of θ∗: if ∥θ∗∥ ⩾ e, we have for some universal
constants c3, c4 > 0: if n ⩾ c3B(d+ t), then with probability at least 1− e−t,∥∥∥∥ θ̂n

∥θ̂n∥
− θ∗

∥θ∗∥

∥∥∥∥ ⩽ c4

√
d+ t

Bn
,

∣∣∥θ̂n∥ − ∥θ∗∥
∣∣ ⩽ c4

√
B3(d+ t)

n
. (19)

The proof of Theorem 1 can be found in Section 8.2 (combining results from Sections 5.2
and 6.3), while the scheme of proof is described in Section 4. In particular, a key structural
result in the analysis is Theorem 6, which provides a sharp high-probability lower bound on the
Hessian of the empirical risk Ĥn(θ) = ∇2L̂n(θ), uniformly for θ belonging to a neighborhood of
θ∗ that is “as large as possible”.

Let us now come back to the question of existence of the MLE; as noted in the introduction,
non-existence of the MLE amounts to linear separation of the dataset. Theorem 1 implies in
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particular that if n ⩾ 2C1Bd, then the probability that the MLE exists is at least 1−exp(− n
2C1B

),
which is optimal by the last part of Theorem 1. This can be seen as a quantitative version of the
convergence to 1 in the phase transition (7) for the existence of the MLE established by Candès
and Sur [CS20]. On the other hand, if n≪ Bd, then Theorem 1 (with t = 0) only implies that
the probability of existence of the MLE is bounded away from 1, rather than close to 0 as in the
phase transition (7).

Theorem 2 below shows that if n≪ Bd, then the probability of existence of the MLE indeed
approaches 0, at a rate exponential in the dimension. This can be seen as a quantitative version
of the convergence to 0 in the phase transition (7) from [CS20]. Theorem 2 is proved in Section 7.

Theorem 2. Let d ⩾ 53, and assume that X ∼ N(0, Id) and that the logistic model is well-
specified. For every κ ⩾ 1, if n ⩽ Bd/(23000κ) then

P(MLE exists) ⩽ exp
(
−max

{
κ
√
d, κ2d/B2

})
+ 6e−d/21 . (20)

Let us now discuss the interpretation of this result.
First, the question of non-existence of the MLE (that is, linear separation) is mainly of

interest when n ⩾ d, since for n < d the dataset is linearly separated, as the points X1, . . . , Xn

do not span Rd. We are therefore interested in the regime d≪ n≪ Bd, where linear separation
no longer occurs deterministically because of the dimension, but instead with high probability
due to the fact that the signal is strong (B ≫ 1). Specifically, in this regime, a strong signal
B entails that a large fraction of labels Yi will be of the same sign as the predictions ⟨θ∗, Xi⟩,
which effectively constrains the directions of the vectors YiXi, making it easier to find a θ ̸= 0
such that ⟨θ, YiXi⟩ ⩾ 0 for every i = 1, . . . , n. Interestingly, if n ≫ B (while n ≪ Bd), then
the true parameter θ∗ will typically not satisfy this property; instead, linear separation will be
achieved by another (random) parameter θ, thanks to the flexibility due to the large dimension
d. As such, in the regime max{B, d} ≪ n ≪ Bd, linear separation holds with high probability
owing to the combination of the “signal strength” and “dimension” effects, rather than one of
the two taken individually.

We now comment on the quantitative bound (20). Theorem 2 implies that if n is small
compared to the threshold of order Bd, then the probability of existence of the MLE is smaller
than exp(−cmax{

√
d, d/B2}) for some constant c. In addition, the parameter κ ⩾ 1 quantifies

how small the sample size n is relative to the critical threshold of Bd, and the smaller the sample
size (that is, the larger κ is), the smaller the bound (20). In particular, in the regime where
n ≍ d and B ≫ 1 (so that κ ≍ B), Theorem 2 shows that the probability of existence of the
MLE is smaller than exp(−cd) for some constant c.

The proof of Theorem 2, which builds on the approach of Candès and Sur [CS20], can be
found in Section 7. Specifically, following [CS20], the starting point of the proof is to reformulate
the property of linear separation into the property that a certain random cone Λ in Rn has a
non-trivial intersection with an independent uniform random subspace. Now, it follows from the
work [ALMT14] that the probability of such an event depends on the dimension of the random
subspace, and on a certain geometric parameter of the cone Λ called “statistical dimension”. In
order to control the probability of existence of the MLE, one must therefore combine two steps:
(i) conditionally on the cone Λ, apply a phase transition result showing that the probability that
a random subspace does not intersect Λ is small; (ii) in order to apply the previous result to the
random cone Λ, control of the statistical dimension of Λ with high probability.

For the first point, Candès and Sur use a phase transition result from [ALMT14]. For the
second point, they establish that the statistical dimension of the random cone Λ converges in
probability to a deterministic value as n, d → ∞ while d/n → γ, for fixed β = ∥θ∗∥. To show
this, they first relate the statistical dimension to (a family of) averages of i.i.d. random variables,
and then establish uniform convergence of the averages to the corresponding expectations.
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While these arguments suffice to establish the 0-1 law (7) in this asymptotic regime, several
refinements are required in order to obtain the quantitative bound of Theorem 2. First, a more
precise phase transition result [ALMT14, Theorem 6.1] must be used in order to finely capture
the dependence on the statistical dimension of Λ. Second and more importantly, one must
establish a refined high-probability control on the statistical dimension of the random cone.
This requires a high-probability bound on the sum of i.i.d. random variables that (as shown
in [CS20]) controls this dimension. We achieve this by first obtaining a tight control on the
moments of the individual summands, and then applying a sharp estimate of Latała [Lat97] on
moments of sums of independent random variables.

2.2 Regularity assumptions

In this section, we introduce formally the setup that we called “regular” in the introduction and
present our two generalizations of Theorem 1, first to the case of a non-Gaussian design (but
still assuming a well-specified model) and then to the most general case of a regular design with
a misspecified model. Examples of settings satisfying these regularity assumptions are given and
discussed in Section 3.

The first assumption on the design is standard and states that the design X is light-tailed;
we refer to Definition 5 in Appendix A for the definition of the ψ1-norm.

Assumption 1. The random vector X is K-sub-exponential for some K ⩾ e, in the sense that
∥⟨v,X⟩∥ψ1 ⩽ K for every v ∈ Sd−1.

The second assumption is also standard in the literature on supervised classification. It states
that the design X does not put too much mass close to the separation hyperplane. It is related to
the margin assumption that allows to derive fast rates of convergence, see [MT99, Tsy04, AT07].

Assumption 2. Let u∗ ∈ Sd−1 and η ∈ (0, 1]. For some c ⩾ 1, one has for every t ⩾ η that

P
(
|⟨u∗, X⟩| ⩽ t

)
⩽ ct . (21)

The third assumption on the other hand is new to the best of our knowledge. It is an
assumption on the two-dimensional marginals of the design X that we call two-dimensional
margin condition.

Assumption 3. Let u∗ ∈ Sd−1, η ∈ [0, 1/e] and c ⩾ 1. For every v ∈ Sd−1 such that ⟨u∗, v⟩ ⩾ 0,
one has

P
(
|⟨u∗, X⟩| ⩽ cη, |⟨v,X⟩| ⩾ c−1max{η, ∥u∗ − v∥}

)
⩾ η/c . (22)

Remark 1. Using that

∥u∗ − v∥/
√
2 ⩽

√
1− ⟨u∗, v⟩2 = ∥u∗ − v∥

√
(1 + ⟨u∗, v⟩)/2 ⩽ ∥u∗ − v∥

if ⟨u∗, v⟩ ⩾ 0, another way of stating Assumption 3 is that for every v ∈ Sd−1, one has

P
(
|⟨u∗, X⟩| ⩽ cη, |⟨v,X⟩| ⩾ c−1max

{
η,
√

1− ⟨u∗, v⟩2
})

⩾ η/c . (23)

This only changes the value of the parameter c from (22) by a factor
√
2. This equivalent

formulation turns out to be more convenient in some situations.

Let us now discuss this new assumption. Recall that the purpose here is to provide a setting
more general than the Gaussian one where the MLE behaves as in the Gaussian case. We argue
here that Assumption 3 is necessary for this task. To see why, note first that, when the design
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X = G is a standard Gaussian vector, the Hessian HG(θ
∗) = ∇2L(θ∗) is, by (36) and (37),

within constant factors of the matrix

H =
1

B3
u∗u∗⊤ +

1

B
(Id − u∗u∗⊤) , (24)

where B = max{∥θ∗∥, e}. This Hessian is also the Fisher information matrix of the statistical
model at θ∗. This implies that, when the design is Gaussian and the model well-specified, the
MLE converges in distribution as n→ ∞:

√
n(θ̂n − θ∗) → N(0, HG(θ

∗)−1) .

For more general design X and still in the well-specified case, the Fisher information matrix is
still equal to the Hessian HX(θ

∗) (but computed using the distribution of X rather than the
Gaussian one) and the MLE converges, as n→ ∞, to

√
n(θ̂n − θ∗) → N(0, HX(θ

∗)−1) .

Therefore, for the MLE to behave as well as in the Gaussian case, at least asymptotically, it is
necessary that the Hessian matrix HX(θ

∗) is at least as large as in the Gaussian case HG(θ
∗),

meaning that it should satisfy an inequality of the form HX(θ) ≽ CH for an absolute constant
C. We will show that Assumptions 1, 2 and 3 are sufficient to prove that this inequality holds,
and even that the Hessian HX(θ) is locally equivalent to H, see Lemma 28. Actually, the main
results in Sections 2.3 and 2.4 show that the MLE indeed behaves within logB factors as in the
Gaussian setting in this general framework.

Moreover, the following result establishes that the new Assumption 3 is necessary to bound
the Hessian HX(θ

∗) in the sense that if Assumptions 1 and 2 hold and HX(θ
∗) ≽ CH, then

Assumption 3 must also hold.

Proposition 1. Let X be a random vector satisfying Assumption 1 with parameter K and
Assumption 2 with parameters u∗ ∈ Sd−1, η = B−1 ⩽ e−1 and c ⩾ 1. If there exists C0 ⩾ e such
that HX(θ

∗) ≽ C−1
0 H, then Assumption 3 holds with parameters u∗ = θ∗/∥θ∗∥, η = 1/B, and

c′ = max
(
c0 logB, 2

√
c0C0c logB, 144K

2 log2(C0KB)
)
,

where c0 = 3 + log(4C0).

The proof of this result can be found in Appendix C.
We can now formulate the definition of “regular distributions” that we use throughout.

Definition 1. Let u∗ ∈ Sd−1, η ∈ (0, e−1] and c ⩾ 1. A random vector X in Rd is said to have an
(u∗, η, c)-regular distribution if it is isotropic (that is, E[XX⊤] = Id) and satisfies Assumptions 2
and 3 with parameters u∗, η, c.

2.3 Well-specified model, regular design

We can now state our main result on the performance of the MLE in the case of a regular design
and a well-specified model, whose proof can be found in Section 8.3.

Theorem 3. Assume that the model is well-specified, with unknown parameter θ∗ = ∥θ∗∥u∗
where u∗ ∈ Sd−1 and let B = max{e, ∥θ∗∥}. Assume that X satisfies Assumptions 1, 2 and 3
with parameters K ⩾ e, u∗, η = B−1 and c. There exist constants c1, c2 that depend only on
c,K such that, if

n ⩾ c1B log4(B)(d+ t) ,

then with probability at least 1− e−t, the MLE θ̂n exists and satisfies

L(θ̂n)− L(θ∗) ⩽ c2 log
4(B)

d+ t

n
. (25)
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The guarantees of Theorem 3 almost match (up to poly-logarithmic factors in B) those of
Theorem 1 in the Gaussian case, which are optimal as discussed above. In fact, one can almost
recover (again up to log4(B) factors) the guarantees of Theorem 1 from this result, since one
can show that the Gaussian design satisfies the regularity assumptions for all u∗, η and with c,K
being universal constants.

2.4 Misspecified model, regular design

We now turn to the general case where the logit model may be misspecified. In this setting,
the conditional distribution of Y given X is no longer determined by θ∗, conversely θ∗ is now a
function of the joint distribution of (X,Y ), as is the case in Statistical Learning. We define θ∗

as the minimizer of the population risk L (see (3)), namely

θ∗ ∈ argmin
θ∈Rd

L(θ) , L(θ) = E
[
log

(
1 + e−Y ⟨θ,X⟩)]. (26)

By the discussion in the introduction, θ∗ exists whenever the distribution of (X,Y ) is not linearly
separated, meaning that there is no θ ̸= 0 such that Y ⟨θ,X⟩ ⩾ 0 almost surely—which we assume
in this section. In addition, θ∗ is unique since we assume that E[XX⊤] = Id, which ensures
strict convexity of L. Theorem 4 below is proved in Section 8.4.

Theorem 4. Suppose that X satisfies Assumptions 1, 2 and 3 with parameters K ⩾ e, u∗,
η = B−1 and c, and that θ∗ = ∥θ∗∥u∗. Let B = max{e, ∥θ∗∥}. There exist constants c1, c2 that
depend only on c,K such that for any t > 0, if

n ⩾ c1B log4(B)(d+Bt) ,

then with probability at least 1− e−t, the MLE θ̂n exists and satisfies

L(θ̂n)− L(θ∗) ⩽ c2 log
4(B)

d+Bt

n
. (27)

Moreover, for any B ⩾ e, there exists a distribution of (X,Y ) with X ∼ N(0, Id) and ∥θ∗∥ = B
such that if n ⩽ c3B(d+Bt) (for some universal constant c3), then

P(MLE exists) ⩽ 1− e−t . (28)

In addition, for the same distribution,

lim inf
n→∞

P
(
L(θ̂n)− L(θ∗) ⩾ c3

d+Bt

n

)
⩾ e−t . (29)

Theorem 4 improves the previous best guarantees for the MLE in logistic regression in the
general misspecified case. As discussed in Section 1.2, these are from [CLL20] for a sub-Gaussian
design, and [OB21] for a Gaussian design. The guarantees in [CLL20] in the sub-Gaussian case
feature an exponential dependence on B. The guarantees in [OB21] in the Gaussian case (a
special case of regular design), which are actually the previous best guarantees for the MLE
in a misspecified setting2, feature a polynomial dependence on B but a stronger one than in
Theorem 4: the condition for existence of the MLE writes (ignoring polylog(B) factors) n ≳
B8dt, and the risk is bounded by B3dt/n.

2Technically speaking, the guarantees in [OB21] (obtained by combining Theorem 4.2 with Proposition D.1)
are stated in the well-specified case. However, they can be extended to the misspecified case through a very minor
modification (renormalizing gradients by the Hesssian of the risk instead of their covariance matrix). Likewise,
the deviation terms in d · t in these results can be tightened to d+ t with no changes to the analysis.
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It should be noted that both the sample size needed for the MLE to exist and the bound
on its excess risk in Theorem 4 exhibit a stronger dependence on B compared to the well-
specified case. As shown by (28) and (29), this stronger dependence on B is in fact necessary
in the misspecified case. This shows that the non-asymptotic guarantees of Theorem 4 for the
existence and the excess risk of the MLE are sharp, up to polylogarithmic factors in B. It should
be pointed out that the degradation only affects an additive term that does not multiply the
dimension d, hence as long as Bt = O(d) (a regime that covers many situations of interest), the
guarantees in the misspecified case actually match those of the well-specified case.

3 Examples of regular design distributions

In the previous section, we introduced certain regularity assumptions (Assumptions 1, 2 and 3)
on the distribution of the design X, which we argued were essentially necessary and sufficient
to obtain the same results as in the Gaussian case. In this section, we provide examples of
distributions that satisfy these assumptions.

The three examples we consider are: sub-exponential distributions when the signal strength
is of constant order (Section 3.1), log-concave distributions (Section 3.2), and product measures
(Section 3.3).

We recall that the regularity assumptions introduced in Section 2.2 depend on both a direc-
tion u∗ ∈ Sd−1 and a scale parameter η ∈ (0, e−1]. When applied to logistic regression, these
correspond respectively to the parameter direction u∗ = θ∗/∥θ∗∥ and inverse signal strength
η = 1/B = 1/max(∥θ∗∥, e). In particular, the stronger the signal, the finer the scale η at which
the regularity assumptions should hold for our guarantees of Section 2 to apply.

3.1 Regularity at constant scales

First, we note that the regularity assumptions at a lower-bounded scale η (corresponding to a
bounded signal strength) are automatically satisfied when the design is sub-exponential.

Proposition 2. Let X be an isotropic and K-sub-exponential random vector (Assumption 1).
Then X is (u∗, η, cK,η)-regular for any u∗ ∈ Sd−1 and η ∈ (0, e−1], where

cK,η = max
{2K log(2K)

η
, 2K4

}
.

The content of Proposition 2 (proved in Section 9.1) is that the regularity assumptions are
general enough to include all sub-exponential distributions, with the caveat that the involved
constant c depends on the scale η. However, it should be noted that the bounds in Theorems 3
and 4 depend exponentially on c, leading to an exponential dependence on the signal strength
B = η−1. For this reason, Proposition 2 is mainly relevant in the case of constant signal strength.

3.2 Regularity of log-concave distributions

The issue of the general reduction from sub-exponential to regular is that it ultimately leads to
a poor (exponential) dependence on the signal strength in the guarantees of Section 2. As we
shall see in Section 3.3, this exponential dependence is necessary in general, hence in order to
obtain similar guarantees as for a Gaussian design, one must strengthen the assumptions on the
design beyond merely sub-exponential tails.

A natural class of probability measures that contains Gaussian measures, and often exhibit
similar properties, is the class of log-concave distributions on Rd. Specifically, recall that the
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distribution PX on Rd is log-concave (see e.g. [SW14]) if, for all Borel sets S, T ⊂ Rd and
λ ∈ (0, 1) such that λS + (1− λ)T = {λs+ (1− λ)t : s ∈ S, t ∈ T} is measurable,

PX(λS + (1− λ)T ) ⩾ PX(S)
λPX(T )

1−λ .

We are interested in the case where X is centered and isotropic, in which case it is log-concave
if and only if it admits a density on Rd of the form exp(−ϕ), for some convex function ϕ : Rd →
R ∪ {+∞}.

The following result shows that centered isotropic and log-concave distributions are regular
in all directions and at all scales.

Proposition 3. Assume that X has a centered isotropic (that is, E[X] = 0 and E[XX⊤] = Id)
and log-concave distribution on Rd. Then X is c-sub-exponential and (u∗, η, c)-regular with a
universal constant c, for every direction u∗ ∈ Sd−1 and every scale η ∈ (0, e−1].

The proof of Proposition 3 is provided in Section 9.2. The fact that log-concave distributions
are regular (with universal constants) mainly comes from a key stability property: the distribu-
tions of their lower-dimensional linear projections are also log-concave [SW14], which is applied
here to two-dimensional projections. In addition, low-dimensional, centered and isotropic dis-
tributions admit a density that is upper and lower-bounded around the origin. Hence, at small
scales they are essentially equivalent to the Lebesgue (or Gaussian) measure, which admits a
“product” or “independence” property for orthogonal linear projections that implies regularity.

3.3 Regularity for i.i.d. coordinates

Besides log-concave measures, another class of distributions that tend to behave similarly to
Gaussian distributions in many high-dimensional contexts is that of product measures, that
is, distributions of random vectors with independent coordinates. In this section, we therefore
consider the question of regularity of product measures, which turns out to be much more subtle
than in the log-concave case.

Specifically, in this section we consider the class of random vectors with i.i.d. sub-exponential
coordinates:

Assumption 4. The random vector X = (X1, . . . , Xd) is such that: X1, . . . , Xd are i.i.d., with
E[Xj ] = 0, E[X2

j ] = 1 and ∥Xj∥ψ1 ⩽ K (for some K ⩾ e) for j = 1, . . . , d.

It is a simple fact (see Lemma 33 in Section 9.3 below) that such a random vector is 4K-
sub-exponential. Hence, the main question is whether Assumptions 2 and 3 are satisfied.

A concrete example which illustrates the main issues is the Bernoulli designX = (X1, . . . , Xd),
whose coordinates are i.i.d. random signs, namely P(Xj = 1) = P(Xj = −1) = 1/2 for 1 ⩽ j ⩽ d
(that is, X is uniform on the discrete hypercube {−1, 1}d). This design satisfies Assumption 4;
in fact, its tails are even lighter than sub-exponential, since its coordinates are bounded and it
is a sub-Gaussian random vector. This design is similar to the Gaussian design in many ways;
for instance, it possesses strong concentration properties.

Despite these facts, the behavior of the MLE under a Bernoulli design can be drastically
different from the case of a Gaussian design. Indeed, as noted below, an exponential dependence
on the signal strength is necessary for the MLE to exist. This contrasts with the linear depen-
dence on B in the Gaussian case (Theorem 1). As an aside, the example below shows that for a
sub-Gaussian design, an exponential dependence on the norm is unavoidable in general, a fact
we alluded to previously. In what follows, we denote by (e1, . . . , ed) the canonical basis of Rd.
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Fact 1. Let X = (X1, . . . , Xd) be a Bernoulli design, and let Y given X follow the logit model
with parameter θ∗ = Be1 for some B ⩾ e. Given an i.i.d. sample of size n ⩾ 1 from the same
distribution as (X,Y ), if n ⩽ 0.1 exp(B) then P(MLE exists) ⩽ 0.1.

Proof. First, since the model is well-specified, one readily verifies that

P(Y ⟨θ∗, X⟩ ⩽ 0) = E
[
P(Y ⟨θ∗, X⟩ ⩽ 0|X)

]
= E[σ(−|⟨θ∗, X⟩|)] ⩽ E[exp(−|⟨θ∗, X⟩|)] .

Now, note that |⟨θ∗, X⟩| = B|X1| = B since X1 = ±1, and in particular |⟨θ∗, X⟩| ⩾ B. Thus,
the above formula shows that P(Y ⟨θ∗, X⟩ ⩽ 0) ⩽ exp(−B). Now, let Z = Y X and define
similarly Z1, . . . , Zn from the i.i.d. sample. If the MLE exists, then in particular θ∗ does not
linearly separate the dataset, hence there exists 1 ⩽ i ⩽ n such that ⟨θ∗, Zi⟩ ⩽ 0. By a union
bound, the probability of this event is lower than n exp(−B) ⩽ 0.1 by assumption on n.

This exponential dependence on the norm B comes from the fact that X is not regular at
small scales in the direction u∗ = e1. Indeed, the random variable ⟨e1, X⟩ = X1 is a random
sign, which puts no mass in the neighborhood (−1, 1) of 0, therefore violating Assumption 3 for
small η and constant c. This illustrates the fact that the existence of the MLE is sensitive to the
behavior of linear marginals of X around the origin, and not merely to the tails of X. Hence,
the “discrete” nature of the Bernoulli design X (supported on a finite set) can lead to a very
different behavior from the Gaussian case.

Although the previous example shows very different behaviors between the Gaussian and
Bernoulli designs, one should keep in mind that it concerns a very specific direction u∗ =
(1, 0, . . . , 0), which is a coordinate vector. This worst-case direction is highly “sparse”; this
contrasts with a typical vector on the sphere, which is “dense” or “delocalized” in the sense that
most of its coordinates are small, namely of order O(1/

√
d). One may expect that for such

vectors, the behavior of the MLE is markedly different than for a sparse direction.
In order to capture this effect, we now consider the “densest” direction u∗ = (1/

√
d, . . . , 1/

√
d),

all of whose coefficients are small. Our aim is to characterize the smallest scale η = η∗d for which
a design X with i.i.d. coordinates satisfies the regularity assumptions (Definition 1) at scale η
in this direction u∗. In particular, if one could show that η∗d → 0 as d → ∞, then this would
establish sensitivity of the behavior of the MLE to the structure of the parameter direction u∗.

We start with Assumption 2 on the one-dimensional marginal ⟨u∗, X⟩ = 1√
d

∑d
j=1Xj . Under

Assumption 4, this random variable is a normalized sum of i.i.d. random variables. It then
follows from the Berry-Esseen inequality that its distribution approaches the standard Gaussian
distribution, down to a scale of order 1/

√
d. This implies the following:

Lemma 1. Let X satisfy Assumption 4. Then, for every u ∈ Sd−1 such that ∥u∥3 ⩽ K−1 and
any t ∈ [K3∥u∥33, 1], one has

t

4
⩽ P

(
|⟨u,X⟩| ⩽ t

)
⩽ t . (30)

In particular, if d ⩾ K6 and u∗ = (1/
√
d, . . . , 1/

√
d), then Assumption 2 holds with η = K3/

√
d

and c = 1.

Lemma 1 (whose proof is provided in Section 9.3) shows that the one-dimensional marginal
⟨u∗, X⟩ exhibits the “right” behavior down to a scale η ≍ 1/

√
d.

However, as discussed in Section 2.2 (see Proposition 1), Assumption 2 on the one-dimensional
marginal ⟨u∗, X⟩ does not suffice to establish a near-Gaussian behavior of the MLE; indeed, for
this task one must establish Assumption 3 on two-dimensional marginals (⟨u∗, X⟩, ⟨v,X⟩) for
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every v ∈ Sd−1. In order to simplify the discussion, let us consider the special case where
v ∈ Sd−1 is orthogonal to u∗. In this case, Assumption 3 is of the form

P
(
|⟨u∗, X⟩| ⩽ cη, |⟨v,X⟩| ⩾ 1

c

)
⩾
η

c
(31)

for some constant c. In the case where X ∼ N(0, Id) is Gaussian, condition (31) immediately
follows from the fact that ⟨u∗, X⟩ and ⟨v,X⟩ are independent if ⟨u∗, v⟩ = 0. However, this
property is highly specific to the Gaussian case, and does not extend to the more general case
of product measures.

By analogy with the proof of Assumption 2, a natural attempt to establish condition (31) is
to resort to Gaussian approximation. Specifically, by applying a two-dimensional Berry-Esseen
inequality to the random vector (⟨u∗, X⟩, ⟨v,X⟩) =

∑d
j=1Xjωj with ωj = (u∗j , vj) = (1/

√
d, vj)

(such that
∑d

j=1 ωjω
⊤
j = I2) and proceeding as in Lemma 1, one can show that condition (31)

holds down to η ≍
∑d

j=1 ∥ωj∥32 ≍ max{∥u∗∥33, ∥v∥33} ≍ max{1/
√
d, ∥v∥33}. This approach ensures

that (31) holds for small η whenever v is sufficiently diffuse that ∥v∥33 is small. Unfortunately,
condition (31) must hold for every v ∈ Sd−1 such that ⟨u∗, v⟩ = 0, and in particular for non-
diffuse vectors v such that ∥v∥33 ≍ 1 (for instance v = (1/

√
2,−1/

√
2, 0, . . . , 0)). For such vectors

v ∈ Sd−1, Gaussian approximation gives vacuous guarantees.
As it happens, an entirely different argument (based on “approximate separation of supports”)

can be used to handle the case of “sparse” vectors, which—when suitably combined with Gaussian
approximation—allows one to establish regularity at a non-trivial scale ηd ≍ d−1/4 → 0. In order
to convey the idea of this argument, and to illustrate how the d−1/4 scaling naturally arises from
this approach, we provide a high-level overview of the argument at the end of Section 9.3. Since
the estimate on ηd obtained with this approach is sub-optimal and is improved in Lemma 2
below, we only provide a sketch of proof that omits significant technical details.

The argument we just alluded to leads to a scale of d−1/4 for the two-dimensional margin
assumption, which is larger than the scale of d−1/2 obtained in Lemma 1 for one-dimensional
marginals. This naturally raises the question of whether the d−1/4 scale can be improved to
d−1/2 by a refined analysis. Lemma 2 below shows that this is indeed the case:

Lemma 2. Let X = (X1, . . . , Xd) have i.i.d. coordinates, with E[X1] = 0, E[X2
1 ] = 1 and

E[X8
1 ] ⩽ κ8 for some κ ⩾ 1. Assume that d ⩾ 2025κ6, define u∗ = (1/

√
d, . . . , 1/

√
d) and let

η ∈ [45κ3/
√
d, 1]. Then, for every v ∈ Sd−1 such that ⟨u∗, v⟩ ⩾ 0, one has

P
(
|⟨u∗, X⟩| ⩽ η, |⟨v,X⟩| ⩾ 0.2max{η, ∥u∗ − v∥2}

)
⩾

η

70 000κ4
. (32)

In particular, if X satisfies Assumption 4, then Assumption 3 holds for any η ∈ [18K3/
√
d, e−1]

with c = 21 000.

Lemma 2 is a somewhat delicate result, so before discussing its implications we first explain
the main idea behind its proof. The detailed proof may be found in Section 9.3.

We need to show that, conditionally on the fact that |⟨u∗, X⟩| ⩽ η, the variable ⟨v,X⟩
fluctuates on a scale of order at least max{η, ∥u∗ − v∥}. Since ⟨v,X⟩ = ⟨u∗, v⟩⟨u∗, X⟩ +√
1− ⟨u∗, v⟩2⟨w,X⟩ with ⟨u∗, w⟩ = 0, this means roughly speaking that the variables ⟨u∗, X⟩

and ⟨w,X⟩ behave as if they were independent. Of course, the main difficulty is that these
variables are not in fact independent, except in the very special case where the vectors u∗ and
w have disjoint supports. In addition, Gaussian approximation on the vector (⟨u∗, X⟩, ⟨w,X⟩)
fails in general since w ∈ Sd−1 is arbitrary.

We therefore need to show that ⟨v,X⟩ exhibits some variability under the event that ⟨u∗, X⟩ is
small, in the absence of independence properties. The main idea to achieve this is to “perturb”
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the vector X = (X1, . . . , Xd) by randomly permuting its coordinates. Specifically, given a
permutation σ ∈ Sd of {1, . . . , d}, we let Xσ = (Xσ(1), . . . , Xσ(d)). We introduce an additional
source of randomness (besidesX) by taking σ to be random, drawn uniformly over the symmetric
group Sd, and independent of X. These transformations are useful thanks to the following
properties:

1. The vector Xσ has the same distribution as X for a fixed σ, and thus also for random σ;

2. Permutations preserve ⟨u∗, X⟩, as ⟨u∗, Xσ⟩ = 1√
d

∑d
j=1Xσ(j) =

1√
d

∑d
j=1Xj = ⟨u∗, X⟩;

3. Conditionally on X (for most values of X), the quantity ⟨v,Xσ⟩ =
∑d

j=1 vjXσ(j) fluctuates
on the desired scale of max{η, ∥u∗ − v∥}, as the random permutation σ varies.

Since the first claim (exchangeability) follows immediately from Assumption 4, the main step
is to justify the third claim. We establish it by applying the Paley-Zygmund inequality, which
reduces the task to lower-bounding one moment of ⟨v,Xσ⟩ (conditionally on X and with respect
to random σ), and to upper-bounding a higher-order moment, ideally to conclude that they are
of the same order of magnitude. In addition, one may explicitly evaluate the moments of even
integer order, as this reduces to computations over symmetric polynomials in X1, . . . , Xd. After
suitable simplifications (exploiting that

∑d
j=1wj =

√
d⟨u∗, w⟩ = 0), we can show that this is

indeed the case, provided that X = (X1, . . . , Xd) satisfies some symmetric conditions that do
hold with high probability. We refer to Section 9.3 for more details on this proof.

We can now gather the conclusions of Lemmas 1 and 2 into the following statement, which
is the main result of the present section.

Proposition 4. Let X = (X1, . . . , Xd) satisfy Assumption 4, set u∗ = (1/
√
d, . . . , 1/

√
d) and

assume that d ⩾ K6. Then X is 4K-sub-exponential and (u∗, η, c)-regular with c = 21 000 for
any η ∈ [18K3/

√
d, e−1].

It then follows from Theorem 3 that, if θ∗ = (B/
√
d, . . . , B/

√
d), then the MLE behaves in

a similar way as if the design was Gaussian as long as B = O(
√
d). Hence, in this direction, the

“discrete” nature of the design has no impact, even for a moderately strong signal.
It is natural to ask if the sufficient condition B = O(

√
d) is also necessary to exhibit a

Gaussian-like behavior. The following simple example shows that this is indeed the case.

Fact 2. Let d be an odd integer, X = (X1, . . . , Xd) a Bernoulli design, and let Y given X follow
the logit model with parameter θ∗ = (B/

√
d, . . . , B/

√
d) for some B ⩾

√
d. Given an i.i.d.

sample of size n ⩾ 1 from this distribution, if n ⩽ 0.1 exp(B/
√
d) then P(MLE exists) ⩽ 0.1.

Proof. The proof is the same as that of Fact 1, except that the condition |⟨θ∗, X⟩| ⩾ B therein
is now replaced by |⟨θ∗, X⟩| ⩾ B/

√
d. Indeed, one has |⟨θ∗, X⟩| = B|

∑d
j=1Xj |/

√
d ⩾ B/

√
d

since
∑d

j=1Xj is an odd integer.

In other words, if B ≫
√
d then some exponential dependence on B is again necessary for

the MLE to exist. In particular, the regularity scale of η ≍ 1/
√
d is indeed optimal for the

Bernoulli design in the direction u∗d = (1/
√
d, . . . , 1/

√
d).

Now, since u∗d = (1/
√
d, . . . , 1/

√
d) is the most “well-spread” vector in Sd−1, it is perhaps

tempting to conjecture that it is the “best” direction from the perspective of logistic regression,
that is, the one with the smallest regularity scale η. If this were indeed the case, then for a
“typical” direction u∗ ∈ Sd−1 one would expect a regularity scale of 1/

√
d at best.

Interestingly, this is not the case, at least for the one-dimensional Assumption 2. It turns
out that, for a “typical” direction u∗ ∈ Sd−1, Assumption 2 is satisfied down to a smaller scale, of
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order 1/d instead of 1/
√
d. This follows from a remarkable result of Klartag and Sodin [KS12],

which states that for a typical direction u = (u1, . . . , ud) ∈ Sd−1, the distribution of the linear
combination ⟨u,X⟩ =

∑d
j=1 ujXj approaches the Gaussian distribution at a rate of 1/d, which

is faster than the 1/
√
d rate for the normalized sum 1√

d

∑d
j=1Xj . We discuss the nature of this

improvement and raise related open questions in Section 9.4.

4 Proof scheme and main lemmas

In this section, we describe the general scheme of proof that we use to establish Theorems 1, 3
and 4, as well as the main lemmas in the analysis.

4.1 Convex localization

We start with the lemma that is used to both establish existence of, and obtain risk bounds for,
the MLE. It is based on a simple convex localization argument, which is purely deterministic.
This reduction is general: the only properties that it uses, besides those explicitly stated in
Lemma 3, are that L̂n, L are twice continuously differentiable, that L̂n is convex and that θ∗ is
a global minimizer of L.

Lemma 3. Assume that there exists a positive-definite matrix H ∈ Rd×d and real numbers
r0, c0, c1, ν > 0 such that the following conditions hold:

• ∥∇L̂n(θ∗)∥H−1 ⩽ ν;

• For every θ ∈ Rd such that ∥θ − θ∗∥H ⩽ r0, one has ∇2L̂n(θ) ≽ c0H;

• For every θ ∈ Rd such that ∥θ − θ∗∥H ⩽ r0, one has ∇2L(θ) ≼ c1H.

If ν < c0r0/2, then the empirical risk L̂n admits a unique global minimizer θ̂n, which satisfies

∥∥θ̂n − θ∗
∥∥
H

⩽
2ν

c0
and L(θ̂n)− L(θ∗) ⩽

2c1ν
2

c20
. (33)

If in addition ν < c0r0/4, then for any θ̃n ∈ Rd such that L̂n(θ̃n)− L̂n(θ̂n) < c0r
2
0/4, one has

L(θ̃n)− L(θ∗) ⩽
c1
2

∥∥θ̃n − θ∗
∥∥2
H

⩽ max

{
8c1ν

2

c20
,
2c1
c0

[
L̂n(θ̃n)− L̂n(θ̂n)

]}
. (34)

Lemma 3 (proved in Section 8.1) reduces the proof of existence and risk bounds for the MLE
(or approximate minimizers θ̃n of the empirical risk L̂n thanks to (34)) to two main components:

• a high-probability upper bound on the H−1-norm ∥∇L̂n(θ∗)∥H−1 of the empirical gradient
at θ∗;

• a high-probability lower bound ∇2L̂n(θ) ≽ c0H on the Hessian of the empirical risk at θ,
uniformly over all θ ∈ Θ = {θ ∈ Rd : ∥θ − θ∗∥H ⩽ r0}.

The risk bound is then given by (33), while the condition for existence of θ̂n is that ν < c0r0/2.
In particular, the smaller ν = νn and the larger r0, the weaker the condition for existence of θ̂n.

Although the matrix H (and the corresponding parameters c0, c1, r0, ν) from Lemma 3 can
in principle be arbitrary, in order to obtain tight guarantees, a natural choice is to take H to be
equivalent up to constant factors to ∇2L(θ∗), the Hessian of the risk at θ∗, which coincides in
the well-specified case with the Fisher information.
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Indeed, in order to obtain sharp bounds we would like c0, c1 to be of constant order, and
indeed in the Gaussian case these will be universal constants. Now by assumption one has
∇2L(θ) ≼ c1H for all θ ∈ Θ = {θ ∈ Rd : ∥θ − θ∗∥H ⩽ r0}, while ∇2L̂n(θ) ≽ c0H for any
θ ∈ Θ. Now for large n, by the law of numbers ∇2L̂n(θ) should be close to its expectation
E[∇2L̂n(θ)] = ∇2L(θ), so for the latter condition to hold with high probability, one should
also have ∇2L(θ) ≽ c0H for all θ ∈ Θ. This implies that H is equivalent to ∇2L(θ∗), namely
c0H ≼ ∇2L(θ∗) ≼ c1H. In addition, this constrains the domain Θ (namely the parameter r0),
which must be contained in the set

Θ′ =
{
θ ∈ Rd : c−1

2 ∇2L(θ∗) ≼ ∇2L(θ) ≼ c2∇2L(θ∗)
}

(35)

with c2 = c1/c0.
It follows from these considerations that, in order to apply Lemma 3 effectively, a first

step is to understand the behavior of the Hessian ∇2L(θ) for θ ∈ Rd—both to set the matrix
H ≈ ∇2L(θ∗), and to identify the largest possible region (35) where the conditions of Lemma 3
could be expected to hold.

By rotation-invariance of the Gaussian distribution, when X ∼ N(0, Id) the Hessian ∇2L(θ)
commutes with any linear isometry of Rd that fixes θ, and is therefore of the form

∇2L(θ) = c0(∥θ∥)uu⊤ + c1(∥θ∥)(Id − uu⊤) , (36)

where u = θ/∥θ∥ (for θ ̸= 0), and letting G ∼ N(0, 1) we have for β ∈ R+:

c0(β) = E[σ′(βG)G2], c1(β) = E[σ′(βG)] .

In addition, one may verify (see Lemma 25 in Section 8.1) that for some numerical constants
c′0, c

′′
0, c

′
1, c

′′
1:

c′0
(β + 1)3

⩽ c0(β) ⩽
c′′0

(β + 1)3
,

c′1
β + 1

⩽ c1(β) ⩽
c′′1

β + 1
. (37)

We will therefore set H to be the matrix

H =
1

B3
u∗u∗⊤ +

1

B
(Id − u∗u∗⊤), u∗ =

θ∗

∥θ∗∥
∈ Sd−1, B = max(e, ∥θ∗∥) , (38)

so that c0H ≼ ∇2L(θ∗) ≼ c1H for some absolute constants c0, c1 for a Gaussian design.
In addition, it can be deduced from this characterization of ∇2L(θ) that the region (35) (for

large B and constant c2) where the Hessian is equivalent to ∇2L(θ∗) coincides up to constants
with an ellipsoid of the form {θ ∈ Rd : ∥θ − θ∗∥H ⩽ r0}, where r0 ≍ 1/

√
B.

4.2 Upper bounds on the empirical gradient

We now consider the first ingredient in the application of Lemma 3, namely high-probability
upper bounds on the H−1-norm of the empirical gradient:

∥∇L̂n(θ∗)∥H−1 =

∥∥∥∥ 1n
n∑
i=1

∇ℓ(θ∗, (Xi, Yi))

∥∥∥∥
H−1

=

∥∥∥∥ 1n
n∑
i=1

σ(−Yi⟨θ∗, Xi⟩)H−1/2Xi

∥∥∥∥ . (39)

We describe below our guarantees in the following three cases: (i) Gaussian design, well-specified
model, (ii) regular design, well-specified model and (iii) regular design, misspecified model. (We
note in passing that in order to control the gradient, we only require Assumptions 1 and 2.)

We start with the first case. A natural approach (which is essentially that of [OB21]) is to
use that σi = σ(−Yi⟨θ∗, Xi⟩) ⩽ 1 and that Xi is sub-Gaussian for each i, to deduce that the
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individual summands in (39) are H−1-sub-Gaussian. By standard deviation bounds for sub-
Gaussian vectors, this implies that for some constant c > 0, with probability at least 1− e−t,

∥∇L̂n(θ∗)∥H−1 ⩽ c

√
Tr(H−1) + ∥H−1∥opt

n
⩽ c

√
Bd+B3(t+ 1)

n
.

Unfortunately, this bound features a suboptimal dependence on the norm B. In order to improve
it, the key observation is the following: if Yi⟨θ∗, Xi⟩ ⩾ 0, then the sigmoid σi is bounded as

σi = σ(−Yi⟨θ∗, Xi⟩) = σ(−|⟨θ∗, Xi⟩|) ⩽ exp(−|⟨θ∗, Xi⟩|) ,

which is very small if |⟨θ∗, Xi⟩| is large. On the other hand, if Yi⟨θ∗, Xi⟩ < 0, then the sigmoid
is no longer small (specifically, 1

2 ⩽ σi ⩽ 1). However, this configuration is highly unlikely if
|⟨θ∗, Xi⟩| is large: indeed, using that the model is well-specified, one has

P(Yi⟨θ∗, Xi⟩ < 0|Xi) = σ(−|⟨θ∗, Xi⟩|) ⩽ exp(−|⟨θ∗, Xi⟩|) . (40)

Hence, the only remaining situation where σi may not be small is when |⟨θ∗, Xi⟩| is upper-
bounded; but since ⟨θ∗, Xi⟩ ∼ N(0, ∥θ∗∥2), the probability that |⟨θ∗, Xi⟩| ≲ 1 is of order 1/B,
which is small when B is large.

From a technical standpoint, the considerations above allow us to obtain improved upper
bounds (compared to those obtained by bounding |σi| ⩽ 1) on the moments of the random
variables ⟨v,H−1/2∇ℓ(θ∗, (Xi, Yi))⟩ for v ∈ Sd−1, whose supremum is precisely the norm (39).
Specifically, these random variables can be shown to satisfy the sub-gamma property [BLM13,
§2.4], which we recall in Definition 6. Using a deviation bound for sub-gamma random vectors
(Lemma 5), we deduce the following result, proved in Section 5.2:

Proposition 5. Assume that X is Gaussian and the model is well-specified. Let H be the matrix
defined in (38). For any t > 0, if n ⩾ 4B(d log 5 + t) then with probability at least 1− 2e−t,

∥∥∇L̂n(θ∗)∥∥H−1 ⩽ 27

√
d+ t

n
.

We now turn to the more general case of a regular design, but still assuming a well-specified
model. Here the guarantees are quite similar to the Gaussian case, and the high-level argument
sketched above remains valid. However, two important properties of the Gaussian distribution
that we used in the proof of Proposition 5 no longer hold for general regular distributions: (1)
linear marginals ⟨u,X⟩ and ⟨v,X⟩ in orthogonal directions u, v ∈ Sd−1 are independent, and
(2) the distribution of ⟨u∗, X⟩ admits a bounded (by 1√

2π
) density. The lack of independence is

handled by using that X is sub-exponential (leading to an additional logB factor); while to get
around the lack of bounded density, we decompose the relevant expectations (that define the
moments of the gradient) over a geometric grid of scales. Using these arguments to again show
that gradients admit sub-gamma moments, we obtain the following bound, proved in Section 5.3.

Proposition 6. Assume that X satisfies Assumptions 1 and 2 with parameters K such that
K logB ⩾ 4, u∗, η = B−1 and c ⩾ 1, and that the model is well-specified. For any t > 0, if
n ⩾ B(d+ t) then with probability at least 1− 2e−t,

∥∥∇L̂n(θ∗)∥∥H−1 ⩽ c′ logB

√
d+ t

n
,

where c′ > 0 is a constant that depends only on K and c.
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We now conclude with the most general case we consider, where the design is regular but the
model is no longer assumed to be well-specified. The fact that the model may be misspecified
induces a significant change: the key bound (40) on the conditional probability of misclassifi-
cation no longer holds. Given that if Yi⟨θ∗, Xi⟩ < 0, then σi = σ(−Yi⟨θ∗, Xi⟩) ∈ [1/2, 1] is of
constant order, and that no bound on P(Yi⟨θ∗, Xi⟩ < 0|Xi) is available, it might be tempting to
simply bound |σi| ⩽ 1, which as discussed above leads to a bound of order

√
(Bd+B3t)/n.

As it happens, this bound is suboptimal and can be improved even in the misspecified
case. The reason for this is that, if the parameter θ∗ = argminθ∈Rd L(θ) has a large norm B,
then the (unconditional) probability P(Y ⟨θ∗, X⟩ < 0) of misclassification of θ∗ must be small.
The key result that expresses this intuition is Lemma 7, which shows that the probability of
misclassification P(Y ⟨θ∗, X⟩ < 0) and the first moment E[|⟨u∗, X⟩|1(Y ⟨θ∗, X⟩ < 0)] are bounded
in the general misspecified case in a similar way as in the well-specified case. This allows one to
refine the naive bound of

√
(Bd+B3t)/n into a near-optimal bound of log(B)

√
(d+Bt)/n.

Proposition 7. Assume that X satisfies Assumptions 1 and 2 with parameters K and (u∗, B−1, c),
but not that the model is well-specified. For any t > 0, if n ⩾ B(d + Bt), then with probability
at least 1− 2e−t, ∥∥∇L̂n(θ∗)∥∥H−1 ⩽ c′ log(B)

√
d+Bt

n
,

where c′ > 0 is a constant that depends only on K and c.

The proof of Proposition 7 may be found in Section 5.4.

4.3 Lower bounds on empirical Hessian matrices

We now turn to the second component of the proof scheme of Lemma 3, namely a high-probability
lower bound on the Hessian of the empirical risk:

Ĥn(θ) = ∇2L̂n(θ) =
1

n

n∑
i=1

σ′(⟨θ,Xi⟩)XiX
⊤
i , (41)

where σ′(s) = {(1 + es)(1 + e−s)}−1 for s ∈ R, uniformly for θ in a neighborhood of θ∗ that
is as large as possible. Specifically, it follows from the discussion of Section 4.1 that an “ideal”
guarantee would be of the form: for n large enough (depending on B, d, t),

P
(
∀θ ∈ Θ, Ĥn(θ) ≽ c0H

)
⩾ 1− e−t , where Θ =

{
θ ∈ Rd : ∥θ − θ∗∥H ⩽

c1√
B

}
(42)

for some constants c0, c1 that should not depend (or weakly depend) on n,B, d, where the matrix
H is defined in (38).

As is clear from the expression (41), the empirical Hessian matrix Ĥn(θ) only depends on
X1, . . . , Xn and not on the labels Y1, . . . , Yn. Hence, the behavior of Ĥn(θ) depends on the
distribution of X but not on the conditional distribution of Y given X. As such, there is no
distinction between the well-specified and misspecified cases, and we only have to consider two
cases: Gaussian design and regular design. While the Gaussian design is a special case of regular
design, we consider it separately because in this case we obtain sharper guarantees, involving
universal constants rather than poly-logarithmic factors in B.

We start with the general case of a regular design, because its analysis is actually simpler
than that of the Gaussian case. Theorem 5 below provide an almost optimal uniform lower
bound on the empirical Hessian of the form (42), up to logarithmic factors in B. We note in
passing that this control on the Hessian only requires Assumptions 1 and 3, while Assumption 2
was used in the control of the gradient discussed in Section 4.2.
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Theorem 5. Let X be a random vector satisfying Assumptions 1 and 3 with parameter K ⩾ e,
u∗ = θ∗/∥θ∗∥, η = 1/B and c ⩾ 1. There exist constants c1, c2, c3 > 0 that depend only on c and
K for which the following holds: for any t > 0, if

n ⩾ c1B
(
log(B)d+ t

)
then with probability at least 1− e−t,

Ĥn(θ) ≽ c2H for every θ ∈ Rd such that ∥θ − θ∗∥H ⩽
c3

log(B)
√
B
.

Theorem 5 is proved in Section 6.1, and we discuss here the main ideas of the proof. The
key observation is that a certain property of the dataset implies the desired behavior (42).
Specifically, the first step is to notice that if X1, . . . , Xn satisfy, for some constants c0, c1,

inf
u,v∈Sd−1

∥u−u∗∥⩽c0/B, ⟨u∗,v⟩⩾0

[ n∑
i=1

1
{
|⟨u,Xi⟩| ⩽

c1
B

; |⟨v,Xi⟩| ⩾
max{B−1, ∥u∗ − v∥}

c1

}]
⩾

n

2c1B
, (43)

then Ĥn(θ) ≽ c2H for every θ ∈ Rd such that ∥θ − θ∗∥H ⩽ c3/
√
B, for some constants c2, c3

that depend on c0, c1. This follows from properties of the function σ′ and the structure of H.
It then remains to establish that condition (43) holds with high probability over the random

draw of X1, . . . , Xn. To achieve this, observe first that condition (43) is essentially a variant of
Assumption 3, with two differences: (i) it holds for any u ∈ Sd−1 such that ∥u − u∗∥ ⩽ c0/B,
rather than just for u = u∗, and (ii) it holds for the random sample X1, . . . , Xn, rather than for
the distribution PX .

Condition (43) (or rather, a slightly weaker version with additional logB factors) is thus
established in two steps. First, we show that Assumption 3 on PX extends to all directions
u ∈ Sd−1 such that ∥u − u∗∥ ⩽ c3/(B logB). Second, we show that this condition on PX is
stable under random sampling with high probability, by using that the class of events in (43)
is a Vapnik-Chervonenkis (VC) class with VC dimension at most O(d), and then applying a
uniform lower bound on the empirical frequencies of a VC class of sets.

Theorem 5 applies to the general regular case, and in particular to the special case of a
Gaussian design. (That the Gaussian design satisfies Assumption 3 may be verified using inde-
pendence of orthogonal linear marginals, or alternatively follows from Proposition 3.) In fact,
the identification of condition (43) as a structural property implying the “right” behavior of the
empirical Hessian in the Gaussian case is what motivates the definition of Assumption 3.

At the same time, it should be noted that the guarantees of Theorem 5 feature additional
logB factors, compared to “ideal” guarantees that would lead to Theorem 1 in the Gaussian
case. In particular, the (sufficient) condition on the sample size n from Theorem 5 is stronger
by a logB factor than the necessary condition presented at the end of Theorem 1.

We address this suboptimality of Theorem 5 in the Gaussian case in Theorem 6 below, which
provides an optimal uniform lower bound on empirical Hessian matrices.

Theorem 6. Assume that X ∼ N(0, Id). For any t > 0, if n ⩾ 320000B(d + t) then with
probability at least 1− 2e−t,

Ĥn(θ) ≽
1

1000
H for every θ ∈ Rd such that ∥θ − θ∗∥H ⩽

1

100
√
B
.

The proof of Theorem 6 is provided in Section 6.3. The proof of this sharp result in the Gaus-
sian case happens to be significantly more delicate than that of the more general, but less precise,
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Theorem 5. The reason for this is that the techniques used to establish Theorem 5 (specifically,
the use of Vapnik-Chervonenkis arguments) inherently lead to additional logarithmic factors,
hence the proof of Theorem 6 requires a fundamentally different approach.

In order to obtain optimal results in the Gaussian case, we rely instead on the so-called
PAC-Bayes method, which involves controlling a “smoothed” version of the process of inter-
est. The use of this technique in non-asymptotic statistics was pioneered by Catoni and co-
authors [AC11, Cat16], and has found several applications to the non-asymptotic study of ran-
dom matrices [Oli16, Mou22, Zhi24]. In the logistic regression setting we consider, the presence
of nonlinear terms (due to the sigmoid σ′) in the empirical Hessian (41) is an additional source of
difficulty, which requires new technical ideas. In particular, instead of applying the PAC-Bayes
method to the process of interest, and later controlling the difference between the smoothed
version of the process and the process itself, we apply it to an auxiliary process whose smoothed
version is (a bound on) the process of interest. In addition, the smoothing distributions we
employ differ from the isotropic Gaussian distributions that have been used in previous works,
in two ways: first, they exhibit an anisotropic structure, and second, one of their component is
far from being Gaussian. We refer to Section 6.3 for more details on this point.

5 Proofs of upper bounds on the empirical gradient

The concentration of the empirical gradient derives from the fact that the vectors H−1/2∇L̂n(θ∗)
are sub-gamma, using a classical result recalled in Section 5.1. To prove this, we first use the
definition of H. Let v ∈ Sd−1 and let w ∈ Sd−1 be such that ⟨u∗, w⟩ = 0 and v − ⟨u∗, v⟩u∗ =
∥v − ⟨u∗, v⟩u∗∥w, then

⟨v,H−1/2∇L̂n(θ∗)⟩ ⩽ B3/2|⟨u∗,∇L̂n(θ∗)⟩|+B1/2|⟨w,∇L̂n(θ∗)⟩| . (44)

Then, for any v ∈ Sd−1, we have by definition of the empirical gradient

⟨v,∇L̂n(θ∗)⟩ =
1

n

n∑
i=1

⟨v,∇ℓ(θ∗, Zi)⟩ .

Thus, by Lemma 5, it is sufficient to prove that the variables ⟨v,∇ℓ(θ∗, Zi)⟩ are sub-gamma.
These random variables are centered, thus, by Point 4 in Lemma 35, this property can be
obtained by proving a proper upper bound on the moments of these random variables. This
upper bound will be proved using the following lemma.

Lemma 4. Let Z = (X,Y ) denote a random variable taking value in Rd × {−1, 1}. Let u∗ =
θ∗/∥θ∗∥ and let p ⩾ 2. For any v ∈ Sd−1,

E[|⟨v,∇ℓ(θ∗, Z)⟩|p] ⩽ E
[(

exp(−|⟨θ∗, X⟩|) + 1{Y ⟨θ∗, X⟩ < 0}
)
|⟨v,X⟩|p

]
. (45)

Moreover, when the model is well-specified, we have

E[|⟨v,∇ℓ(θ∗, Z)⟩|p] ⩽ 2E
[
exp(−|⟨θ∗, X⟩|)|⟨v,X⟩|p

]
. (46)

Proof. As ∇ℓ(θ∗, Z) = −Y σ(−Y ⟨θ∗, X⟩)X, for any v ∈ Sd−1

|⟨v,∇ℓ(θ∗, Z)⟩| = σ(−Y ⟨θ∗, X⟩)|⟨v,X⟩| .

Moreover, as σ(−|x|) ⩽ exp(−|x|) and σ(x) ⩽ 1,

σ(−Y ⟨θ∗, X⟩) ⩽ exp(−|⟨θ∗, X⟩|) + 1{Y ⟨θ∗, X⟩ < 0} .
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This proves (45) since, for any p ⩾ 1, we have σp ⩽ σ.
For (46), when the model is well-specified, we have

E[1{Y ⟨θ∗, X⟩ < 0} |X] = σ(−|⟨θ∗, X⟩|) ⩽ exp(−|⟨θ∗, X⟩|) . (47)

Hence, (46) follows by plugging this bound into (45).

5.1 Concentration of sub-gamma random vectors

The concentration of empirical gradients are based on the following classical concentration in-
equality for sub-gamma random vectors.

Lemma 5. Let Z1, . . . , Zn denote independent random vectors and let V denote a linear subspace
of Rd. Assume that, for any v ∈ Sd−1 ∩ V , ⟨v, Zi⟩ is (ν2,K) sub-gamma (see Definition 6).
Then, for any t > 0,

P
(

sup
v∈V ∩Sd−1

1

n

n∑
i=1

⟨v, Zi⟩ > 2ν

√
2(d log 5 + t)

n
+ 2K

d log 5 + t

n

)
⩽ exp(−t) .

Proof. By Point 3 in Lemma 35, the random variables

1

n

n∑
i=1

⟨v, Zi⟩, v ∈ V ∩ Sd−1,

are (ν2/n,K/n) sub-gamma. Thus, by Bernstein’s inequality, recalled in point 2 of Lemma 35,
for any v ∈ V ∩ Sd−1 and any t > 0, it holds

P
(
1

n

n∑
i=1

⟨v, Zi⟩ > ν

√
2t

n
+K

t

n

)
⩽ exp(−t) . (48)

To make this bound uniform and conclude the proof, we use an ε-net argument. Let N denote
a maximal set of 1/2-separated points in the unit ball BV for the Euclidean norm in V . Then
each point in BV is at distance at most 1/2 of a point in N , so, for every v ∈ BV , there exists
v′ ∈ N such that ∥v − v′∥ ⩽ 1/2. Therefore, for any v ∈ BV ,

1

n

n∑
i=1

⟨v, Zi⟩ =
1

n

n∑
i=1

⟨v′, Zi⟩+
1

n

n∑
i=1

⟨v − v′, Zi⟩ ⩽ max
v′∈N

1

n

n∑
i=1

⟨v′, Zi⟩+
1

2
sup
v∈BV

1

n

n∑
i=1

⟨v, Zi⟩ .

As this holds for any v ∈ BV , it shows that

sup
v∈BV

1

n

n∑
i=1

⟨v, Zi⟩ ⩽ 2max
v′∈N

1

n

n∑
i=1

⟨v′, Zi⟩ .

Therefore, using a union bound, for any t > 0,

P
(

sup
v∈BV

1

n

n∑
i=1

⟨v, Zi⟩ > 2ν

√
2t

n
+2K

t

n

)
⩽ P

(
max
v∈N

1

n

n∑
i=1

⟨v, Zi⟩ > ν

√
2t

n
+K

t

n

)
⩽ |N | exp(−t) .

Now by [Ver18, Lemma 4.2.13], we have |N | ⩽ 5d, therefore the last inequality applied with
t′ = d log 5 + t shows the result.
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5.2 Proof of Proposition 5 (Gaussian design, well-specified model)

By (46), we have to bound the random variables E[exp(−|⟨θ∗, X⟩|)|⟨v,X⟩|p] in the case where
the design X is Gaussian. We start with the simplest case where ∥θ∗∥ < e, so B = e. In this
case, we use that exp(−|⟨θ∗, X⟩|) ⩽ 1 to say that, for any v ∈ Sd−1, we have

E[exp(−|⟨θ∗, X⟩|)|⟨v,X⟩|p] ⩽ E
[
|⟨v,X⟩|p

]
=

√
2
p

√
π
Γ

(
p+ 1

2

)
⩽

p!√
π
. (49)

By Point 4 in Lemma 35, the variable ⟨v,∇ℓ(θ∗, Zi)⟩ is thus (2/
√
π, 1) sub-gamma. Hence, by

Lemma 5, for any t > 0, with probability larger than 1− exp(−t)

∀v ∈ Sd−1, ⟨v,∇L̂n(θ∗)⟩ ⩽ 2

(
2

(π)1/4

√
d log 5 + t

n
+
d log 5 + t

n

)
⩽ 6

√
d+ t

n
, (50)

where the last inequality holds as n ⩾ 4(d log 5 + t). Taking the supremum over v ∈ Sd−1 and
using that ∥∇L̂n(θ∗)∥H−1 ⩽ e3/2∥∇L̂n(θ∗)∥ and 6e3/2 ⩽ 27 gives the desired bound. Assume
now that ∥θ∗∥ ⩾ e, so ∥θ∗∥ = B. For any k ⩾ 0, using that the density of ⟨u∗, X⟩ ∼ N(0, 1) is
upper-bounded by 1/

√
2π, we get

E
[
exp(−|⟨θ∗, X⟩|)|⟨u∗, X⟩|k

]
= E

[
exp(−B|⟨u∗, X⟩|)|⟨u∗, X⟩|k

]
⩽

1√
2π

∫
R
|x|k exp(−B|x|)dx =

√
2

π

k!

Bk+1
. (51)

Thus, (51) and (46) show that

E[|⟨u∗,∇ℓ(θ∗, Z)⟩|p] ⩽ 2
√
2

B3
√
π

p!

Bp−2
.

This shows, by Bernstein’s inequality recalled in (48) that, for any t > 0, with probability larger
than 1− exp(−t)

|⟨u∗,∇L̂n(θ∗)⟩| ⩽
1

B3/2

√
t

n

(
2

(
8

π

)1/4

+

√
Bt

n

)
⩽

3

B3/2

√
t

n
, (52)

where the last inequality holds because n ⩾ 4Bt. Now let w ∈ Sd−1 such that ⟨w, u∗⟩ = 0, the
Gaussian random variables ⟨θ∗, X⟩ and ⟨w,X⟩ are independent, so

E[exp(−|⟨θ∗, X⟩|)|⟨w,X⟩|p] = E[exp(−|⟨θ∗, X⟩|)]E[|⟨w,X⟩|p] .

We bound the first term in the right-hand side with (51) with k = 0 and the second one with
(49) to get

E[exp(−|⟨θ∗, X⟩|)|⟨w,X⟩|p] ⩽ 2

π

p!

B
.

By Point 4 in Lemma 35, the vectors ⟨v,∇ℓ(θ∗, Zi)⟩ are (8/(πB), 1) sub-gamma. Hence, by
Lemma 5, for any t > 0, with probability larger than 1 − exp(−t), simultaneously for any
w ∈ Sd−1 such that ⟨w, u∗⟩ = 0,

⟨w,∇L̂n(θ∗)⟩ ⩽ 8

√
d log 5 + t

πBn
+

2(d log 5 + t)

n
⩽ 6

√
d+ t

Bn
. (53)

Plugging (52) and (53) into (44) concludes the proof of the second part of the proposition.

30



5.3 Proof of Proposition 6 (regular design, well-specified model)

We now prove Proposition 6, which is a deviation bound on the empirical gradient when the
model is still well-specified, but the design is no longer Gaussian and instead satisfies Assump-
tions 1 and 2 with parameters u∗, η = B−1 and c ⩾ 1.

Since the model is well-specified, by (46), we have to bound E[exp(−|⟨θ∗, X⟩|)|⟨v,X⟩|p] when
the design X is regular to prove the result.

Bounds on moments for regular designs. We start with the following bound on moments.

Lemma 6. Let θ∗ ∈ Rd \ {0}, u∗ = θ∗/∥θ∗∥ and B = max(e, ∥θ∗∥). Suppose that X satisfies
Assumptions 1 with parameter K > 0 and 2 with parameters η = 1/B and c ⩾ 1. Then, for any
p ⩾ 0, for any v ∈ Sd−1,

E
[
exp(−|⟨θ∗, X⟩|)|⟨u∗, X⟩|p

]
⩽

9c

B

(
K log(B)

2B

)p
p! . (54)

E
[
exp(−|⟨θ∗, X⟩|)|⟨v,X⟩|p

]
⩽

5ec

B

(
K log(B)

2

)p
p! . (55)

Proof of Lemma 6. By Assumption 1, ∥⟨v,X⟩∥ψ1 ⩽ K, so by Definition 5,

E[|⟨v,X⟩|p] ⩽ Kp

(2e)p
pp ⩽

(
K

2

)p
p! .

This proves the result in the case where ∥θ∗∥ ⩽ e. Therefore, in the remaining of the proof, we
assume that ∥θ∗∥ > e, so B = ∥θ∗∥ > e. Since X satisfies Assumption 2, for any b > 0

E[exp(−b|⟨u∗, X⟩|)] ⩽ P
(
|⟨u∗, X⟩| ⩽ 1

B

)
+
∑
k⩾0

exp

(
− b2k

B

)
P
(
|⟨u∗, X⟩| ⩽ 2k+1

B

)

⩽
c

B

(
1 +

∑
k⩾0

2k+1 exp

(
− b2k

B

))

⩽
c

B

(
1 + 4

∫ +∞

1/2
exp

(
− bt

B

)
dt

)
⩽

c

B

(
1 +

4B

b

)
.

This yields

E
[
exp(−B|⟨u∗, X⟩|)|⟨u∗, X⟩|p

]
⩽ sup

t>0

{
tpe−Bt/2

}
E
[
exp

(
− B

2
|⟨u∗, X⟩|

)]
⩽

(
2

B

)p 9c
B
p! .

This proves (54). For (55), Hölder’s inequality implies that for any ν ∈ (0, 1),

E
[
exp(−B|⟨u∗, X⟩|)|⟨v,X⟩|p

]
⩽ E[|⟨v,X⟩|p/ν ]νE

[
exp

(
−B|⟨u∗, X⟩|

)]1−ν
⩽

(
K

2ν

)p
p!

(
5c

B

)1−ν
.

Letting ν = 1/ log(B),

E
[
exp(−B|⟨u∗, X⟩|)|⟨v,X⟩|p

]
⩽

5ec

B

(
K log(B)

2

)p
p! .

This concludes the proof of (55).
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Conclusion of the proof. By (54) and Bernstein’s inequality, we deduce that, for any t > 0,
with probability larger than 1− 2e−t,

|⟨u∗,∇L̂n(θ∗)⟩| ⩽
K logB

B3/2

√
t

n

(√
9c

2
+

√
Bt

4n

)
⩽ 3.2

K logB

B3/2

√
ct

n
, (56)

where the last inequality follows from n ⩾ 4Bt.
From (55) and Lemma 5, with probability larger than 1 − e−t, for any w ∈ Sd−1 such that

⟨u∗, w⟩ = 0,

⟨w,∇L̂n(θ∗)⟩ ⩽
5K logB√

B

√
d+ t

n

(√
c+

√
B(d log 5 + t)

4n

)
⩽

6K logB√
B

√
c(d+ t)

n
.

Plugging this upper bound and (56) into (44) concludes the proof of the proposition.

5.4 Proof of Proposition 7 (regular design, misspecified model)

We now turn to the proof of Proposition 7, which provides a deviation bound on the empirical
gradient in the misspecified case. Specifically, X satisfies Assumptions 1 and 2 and the model
might not be well-specified. The parameter θ∗ is defined using the joint distribution of Z =
(X,Y ) by

θ∗ = argmin
θ∈Rd

L(θ), where L(θ) = E[ℓ(θ, Z)] .

Recall that, from Lemma 4, the main task is to bound, for all p ⩾ 2, the expectations

E
[
(exp(−|⟨θ∗, X⟩|) + 1{Y ⟨θ∗, X⟩ < 0})|⟨v,X⟩|p

]
.

The first expectation is bounded using Lemma 6. Therefore, we focus in this proof on the second
expectation

E
[
1{Y ⟨θ∗, X⟩ < 0} |⟨v,X⟩|p

]
.

The main problem here is that (47) does not hold and has to be extended. When the model
might not be well-specified, the control of this last expectation is slightly worse than the one
provided in Lemma 6 for the first expectation, yielding the extra

√
B in front of

√
t.

Bounds on the first moments. In this section, we bound the expectation in the case where
p = 0 and p = 1. This is a key step toward the bound for p = 2 and then for general p.

Lemma 7. Let θ∗ ∈ Rd such that ∥θ∗∥ ⩾ e and let u∗ = θ∗/∥θ∗∥. Suppose that X satisfies
Assumption 2 with parameters (u∗, B−1, c). Then,

E
[
|⟨θ∗, X⟩|1(Y ⟨θ∗, X⟩ < 0)

]
⩽

6c

B2
; (57)

P(Y ⟨θ∗, X⟩ < 0) ⩽
3.21c

B
. (58)

Remark 2. Notice that the second bound also holds when ∥θ∗∥ ⩽ e as it is trivial then and the
first one also becomes trivial (and therefore holds) in this case as soon as c ⩾ e2/6 ≈ 1.23.

Proof. Since L is minimized in θ∗, one has d
dt

∣∣
t=1

L(tθ∗) = 0. Hence

0 = E
[
Y ⟨θ∗, X⟩σ(−Y ⟨θ∗, X⟩)

]
= E

[
|⟨θ∗, X⟩|σ

(
− |⟨θ∗, X⟩|

)
1(Y ⟨θ∗, X⟩ ⩾ 0)− |⟨θ∗, X⟩|σ

(
|⟨θ∗, X⟩|

)
1(Y ⟨θ∗, X⟩ < 0)

]
.
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Now, using that σ(t) = 1− σ(−t), we obtain:

0 = E
[
|⟨θ∗, X⟩|

{
σ(−|⟨θ∗, X⟩|)

[
1− 1(Y ⟨θ∗, X⟩ < 0)

]
−
[
1− σ(−|⟨θ∗, X⟩|)

]
1(Y ⟨θ∗, X⟩ < 0)

}]
= E

[
|⟨θ∗, X⟩|

{
σ(−|⟨θ∗, X⟩|)− 1(Y ⟨θ∗, X⟩ < 0)

}]
,

which writes
E
[
|⟨θ∗, X⟩|1(Y ⟨θ∗, X⟩ < 0)

]
= E

[
|⟨θ∗, X⟩|σ(−|⟨θ∗, X⟩|)

]
. (59)

By (54) applied with p = 1, this shows (57). Moreover, as 1 ⩽ |⟨θ∗, X⟩| + 1(|⟨θ∗, X⟩| ⩽ 1), we
have

P(Y ⟨θ∗, X⟩ < 0) ⩽ E
[
|⟨θ∗, X⟩|1(Y ⟨θ∗, X⟩ < 0)

]
+ E

[
1(|⟨θ∗, X⟩| ⩽ 1)1(Y ⟨θ∗, X⟩ < 0)

]
⩽ E

[
|⟨θ∗, X⟩|σ(−|⟨θ∗, X⟩|)

]
+ P(|⟨θ∗, X⟩| ⩽ 1) .

Bounding the first term with (57) and the second using Assumption 2 concludes the proof.

Bounds on the second moments. In this paragraph, we bound the expectation of interest
for p = 2. We deduce an upper bound on the variance of the gradients.

Lemma 8. Let θ∗ ∈ Rd of direction u∗ ∈ Sd−1. Suppose that X satisfies Assumptions 1 and 2
with parameters K ⩾ e, (u∗, B−1, c). Then, for any v ∈ Sd−1,

E
[
1{Y ⟨θ∗, X⟩ < 0} ⟨u∗, X⟩2

]
⩽

6cK log(KB2)

B2
.

E
[
1{Y ⟨θ∗, X⟩ < 0} ⟨v,X⟩2

]
⩽

max{4e2, 3.21cK2 log2B}
4eB

.

Proof. We start with the second inequality. As E[⟨v,X⟩2] = 1, the left-hand side is smaller than
1 while the right-hand side is at least 1 if B = e. Therefore, we can assume that ∥θ∗∥ = B > e.

By (58), P(Y ⟨θ∗, X⟩ < 0) ⩽ min{1, 3.21c/B}. Hence, by the first part of Lemma 9,

E
[
1{Y ⟨θ∗, X⟩ < 0} ⟨v,X⟩2

]
⩽

3.21cK2 log2(B)

4eB
,

which shows the second inequality since B ⩾ e.
For the first inequality, when ∥θ∗∥ < e, the upper bound is larger than 1 while

E
[
1{Y ⟨θ∗, X⟩ < 0} ⟨u∗, X⟩2

]
⩽ E[⟨u∗, X⟩2] = 1 ,

so the inequality holds in this case. Hence, we may assume that ∥θ∗∥ ⩾ e. In this case, by (57),

E
[
|⟨u∗, X⟩|1(Y ⟨θ∗, X⟩ < 0)

]
⩽

6c

B2
.

Thus, applying the second part of Lemma 9 below with U = |⟨u∗, X⟩|1(Y ⟨θ∗, X⟩ < 0) and
V = |⟨u∗, X⟩|, we get

E
[
⟨u∗, X⟩21(Y ⟨θ∗, X⟩ < 0)

]
= E[UV ] ⩽

6c

B2
K log

(
e ∨ KB2

6c

)
⩽

6cK log(KB2)

B2
.

Note that, together with Lemma 6 and (45), Lemma 8 shows that, for any v ∈ Sd−1,

E[⟨u∗,∇ℓ(θ∗, Z)⟩2] ⩽ 7.1cK log(KB2)

B2
. (60)

E[⟨v,∇ℓ(θ∗, Z)⟩2] ⩽ cK2 log2B

B
. (61)
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Conclusion of the proof. The concentration of the gradients ⟨v,∇L̂n(θ∗)⟩ now follows from
general facts on sub-exponential random variables recalled in Lemma 35. Recall that, for any
v ∈ Sd−1,

⟨v,∇L̂n(θ∗)⟩ =
1

n

n∑
i=1

⟨v,∇ℓ(θ∗, Zi)⟩

The random variables ⟨u∗,∇ℓ(θ∗, Zi)⟩ are centered, their variance is by (60) bounded from above
by 7.1cK log(KB2)/B2 ⩽ C2K2(logB)/B2 = ν2, where C2 = 14.2c(logK)/K. Moreover, as

|⟨u∗,∇ℓ(θ∗, Z)⟩| = σ(−Y ⟨θ∗, X⟩)|⟨u∗, X⟩| ⩽ |⟨u∗, X⟩| ,

they also satisfy by Assumption 1, ∥⟨u∗,∇ℓ(θ∗, Z)⟩∥ψ1 ⩽ K. Hence, by Point 6 in Lemma 35,
they are (ν2,K ′) sub-gamma, with

ν2 =
C2K2 log(B)

B2
, K ′ = max(eν,K) log

(
Bmax(eν,K)

CK

)
⩽ c′K log(B) , (62)

where c′ denote a function of c and K whose value may change from line to line. Therefore, by
Lemma 35, for any t > 0, with probability larger than 1− 2 exp(−t),

|⟨u∗,∇L̂n(θ∗)⟩| ⩽
c′K

B

√
t

n

(√
logB +B logB

√
t

n

)
⩽ c′

K logB

B

√
t

n
. (63)

In the last inequality, we used that n ⩾ 4B2t.
Now, for any v ∈ Sd−1, the random variables ⟨v,∇ℓ(θ∗, Zi)⟩ are centered, with variance

bounded from above by cK2 log2(B)/B from (61). Moreover, as

|⟨v,∇ℓ(θ∗, Z)⟩| = σ(−Y ⟨θ∗, X⟩)|⟨v,X⟩| ⩽ |⟨v,X⟩| ,

they also satisfy by Assumption 1, ∥⟨v,∇ℓ(θ∗, Z)⟩∥ψ1 ⩽ K. Hence, by Point 6 in Lemma 35,
they are (ν2,K ′) sub-gamma, with

ν2 =
cK2 log(B)2

B
, K ′ = max(eν,K) log

(√
Bmax(eν,K)√
cK log(B)

)
⩽ c′K log(B) .

Therefore, by Lemma 5, for any t > 0 and any w ∈ Sd−1 such that ⟨w, u∗⟩ = 0,

⟨w,∇L̂n(θ∗)⟩ ⩽
c′ logB√

B

√
d+ t

n

(
1 +

√
B(d+ t)

n

)
⩽ c′

logB√
B

√
d+ t

n
,

where the last inequality holds since n ⩾ B(d + Bt). Plugging this upper bound and (63) into
(44) concludes the proof of the proposition.

We conclude this section with the following lemma that was used in the proof of Lemma 8.

Lemma 9. Let U, V be nonnegative real random variables such that E[U ] ⩽ ε and ∥V ∥ψ1 ⩽ K
for some ε,K > 0.

1. If U ⩽ 1 almost surely and ε ⩽ 1, then E[UV 2] ⩽ ε · K
2 log2(e∨ε−1)

4e .

2. If ∥U∥ψ1 ⩽ K, then E[UV ] ⩽ εK log(e ∨K/ε).
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Proof. We start with the first point. Using Hölder’s inequality, for any p > 1 we have (using
that up/(p−1) ⩽ u for u ∈ [0, 1])

E
[
UV 2

]
⩽ E

[
|V |2p

]1/p E[Up/(p−1)
]1−1/p

⩽ ∥V ∥22p E[U ]1−1/p

⩽
(Kp
2e

)2
ε1−1/p =

K2ε

4e2
ε−1/pp2 .

Now, letting p′ → p = max(1, log(1/ε)) ⩾ 1, we obtain

E[UV 2] ⩽
K2ε

4e2
· e ·max(1, log2(1/ε)) =

K2

4e
· ε log2(e ∨ ε−1) .

We now prove the second inequality. For any p > 1, letting q = p/(p− 1) we have

E[UV ] ⩽ E[V p]1/pE[U q]1/q ⩽
Kp

2e
E[U q]1/q , (64)

where the second inequality comes from the fact that ∥V ∥ψ1 ⩽ K. Next, for any r > 1, write
q = 1− 1

r +
q′

r with q′ = 1 + r(q − 1) > q. We also have by Hölder’s inequality

E[U q] = E[U1−1/r(U q
′
)1/r] ⩽ E[U ]1−1/r∥U∥q

′/r
q′ ⩽ ε1−1/r

(Kq′
2e

)q′/r
= ε1−1/r

(K[1 + r(q − 1)]

2e

)q−1+1/r
= εq

(K[1 + r(q − 1)]

2eε

)q−1+1/r
,

where we used that E[U ] ⩽ ε and ∥U∥ψ1 ⩽ K. Hence, using that q − 1 = 1/(p − 1), letting
r = p− 1 (assuming p > 2) so that qr = p, we obtain

E[U q]1/q ⩽ ε
(K[1 + r(q − 1)]

2eε

)1−1/q+1/(qr)
= ε

(K
eε

)2/p
.

Plugging this inequality into (64) and letting p → 2 log(e ∨K/ε) ⩾ 2, so that lim(K/ε)2/p ⩽ e,
we get

E[UV ] ⩽
K · 2 log(e ∨K/ε)

2e
· εe = εK log(e ∨K/ε) ,

which establishes the second point.

6 Proofs of lower bounds on empirical Hessian matrices

This section is devoted to the proofs of the uniform lower bound on empirical Hessian matrices
stated in Section 4.3. Specifically, Sections 6.1 and 6.2 contain the proof of Theorem 5 (in the
regular case), while Sections 6.3 and 6.4 contain the proof of Theorem 6 (in the Gaussian case).

6.1 Proof of Theorem 5 (regular design)

In this section, we prove Theorem 5, namely the uniform lower bound on empirical Hessian
matrices in the case of a regular design. Specifically, we assume that X satisfies Assumptions 1
and 3 with parameters K ⩾ e, u∗ = θ∗/∥θ∗∥, η = 1/B and c ⩾ 1.

Fix v ∈ Sd−1 and θ ∈ Θ, we want to bound from below

⟨Ĥn(θ)v, v⟩ =
1

n

n∑
i=1

σ′(⟨θ,Xi⟩)⟨v,Xi⟩2 .
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The function σ′(x) = exp(x)/(1 + exp(x))2 is even, non negative, non increasing on [0,+∞).
Therefore, for any m,M > 0,

⟨Ĥn(θ)v, v⟩ ⩾
σ′(m(1 + r)B)M2

n

n∑
i=1

1{|⟨u,Xi⟩| ⩽ m, |⟨v,Xi⟩| ⩾M} , (65)

where we also used that, as ∥θ − θ∗∥H ⩽ r/
√
B, ∥θ∥ ⩽ (1 + r)B by Lemma 17. It remains to

bound from below the empirical process n−1
∑n

i=1 1
{∣∣⟨u,Xi⟩

∣∣ ⩽ m, |⟨v,Xi⟩| ⩾M
}

uniformly
over θ ∈ Θ and v ∈ Sd−1, for a proper choice of m and M . We want to apply Lemma 10. For
this, we have to estimate P(|⟨u,Xi⟩| ⩽ m, |⟨v,Xi⟩| ⩾ M) for each θ ∈ Θ and v ∈ Sd−1. If
∥θ∗∥ ⩽ e, B = e so η = 1/e, so Proposition 2 shows that Assumption 3 is satisfied with constant
max{2eK log(2K), 2K4} = 2K4. Therefore,

P
(∣∣⟨u,X⟩

∣∣ ⩽ 2K4

B
;
∣∣⟨v,X⟩

∣∣ ⩾ max {1/B, ∥u∗ − v∥}
2K4

)
⩾

1

2K4B
.

When ∥θ∗∥ ⩾ e, the third point of Lemma 17 implies that for every θ ∈ Θ,

∥u− u∗∥ ⩽

√
2

[K log(c(c+ 1)B)− r]

r

B
⩽

2r

KB log(c(c+ 1)B)
.

By Lemma 11, this implies that for all θ ∈ Θ and v ∈ Sd−1, one has for all t ⩾ 1/B

P
(∣∣⟨u,X⟩

∣∣ ⩽ c+ 1

B
;
∣∣⟨v,X⟩

∣∣ ⩾ max {1/B, ∥u∗ − v∥}
c+ 1

)
⩾

1

(c+ 1)B
.

This suggests to choose m = γ/B, M = max(1/B, ∥u∗ − v∥)/γ in (65), where γ = c + 1 if
∥θ∗∥ ⩾ e and γ = 2K4 if ∥θ∗∥ < e. With this choice, we have, for all θ ∈ Θ and all v ∈ Sd−1,

P
(∣∣⟨u,X⟩

∣∣ ⩽ γ

B
;
∣∣⟨v,X⟩

∣∣ ⩾ max {1/B, ∥u∗ − v∥}
γ

)
⩾

1

γB
. (66)

The next step to apply Lemma 10 is to bound the VC dimension of the class of sets of the
form

{
x : |⟨u, x⟩| ⩽ m, |⟨v, x⟩| ⩾ M

}
for any u, v ∈ Sd−1 and any m,M > 0. For this, remark

that each of these sets is the union of two intersections of 3 half-spaces. The class of all half-
spaces in Rd has VC dimension d [DGL96, Theorem 13.8]. Therefore, by [vdVW09, Theorem
1.1], the class of all intersections of 3 half-spaces is bounded from above by 6.9 log(12)d, and
therefore, by the same result, the VC dimension of the class of all unions of 2 intersections of 3
half spaces is bounded from above by

4.6 log(8)× 6.9 log(12)d ⩽ 165d .

Hence, Lemma 10 applies with p = 1/(γB) and VC dimension 165d. It shows that, whenever

n ⩾ max
{
270000 log

(
730000γB

)
d, 80γBt

}
,

with probability at least 1− e−t, one has simultaneously for all θ ∈ Θ and v ∈ Sd−1,

1

n

n∑
i=1

1
{∣∣⟨u,Xi⟩

∣∣ ⩽ m, ⟨v,Xi⟩ ⩾M
}
⩾

1

2γB
.

36



Plugging this estimate into (65) shows that, on the same event,

⟨Ĥn(θ)v, v⟩2 ⩾
σ′(γ(1 + r))

2γ2B
max

{
1

B
, ∥u∗ − v∥

}2

⩾
σ′(γ(1 + r))

4γ2

(
⟨u∗, v⟩2

B3
+

1− ⟨u∗, v⟩2

B

)
=
σ′(γ(1 + r))

4γ2
⟨Hv, v⟩ .

In addition, for all real x, σ′(x) ⩾ e−|x|

2 1(|x| ⩾ 1). One can also check that x2 exp(αx) ⩽
exp((α + 2/e)x) for every x, α ⩾ 1. The result then follows by applying this with x = γ and
α = 1 + r. The condition on r ensures that 1 + r + 2/e ⩽ 2.

6.2 Technical lemmas for the proof of Theorem 5

This section gathers the technical tools that we used in the previous proof. We used the following
VC-type inequality (see e.g. [BLM13, Example 3.10] for the definition of the VC dimension),
whose proof is recalled for the sake of completeness and to justify our numerical constants.

Lemma 10. Let X1, . . . , Xn be i.i.d. random variables taking values in X with common dis-
tribution P , and let A be a collection of subsets of X with VC dimension at most d ⩾ 1. Let
p ∈ (0, 1), and assume that P (A) ⩾ p for any A ∈ A. If

n ⩾
1600 log(4400/p) d

p
, (67)

then with probability at least 1− e−np/80, one has

inf
A∈A

1

n

n∑
i=1

1(Xi ∈ A) ⩾
p

2
. (68)

Proof. We first modify the class A to ensure that all events have a probability equal to p, rather
than larger than p. For i = 1, . . . , n, we let X ′

i = (Xi, Ui), where U1, . . . , Un are i.i.d. random
variables uniformly distributed on [0, 1] and independent from X1, . . . , Xn, and denote by P ′

the common distribution of the i.i.d. variables X ′
1, . . . , X

′
n. In addition, we define the class A′

of subsets of X × [0, 1] by
A′ =

{
A×

[
0,

p

P (A)

]
: A ∈ A

}
.

Note that, for any A′ = A× [0, p/P (A)] ∈ A′, one has P ′(A′) = P (A)× p
P (A) = p. In addition,

inf
A′∈A′

1

n

n∑
i=1

1(X ′
i ∈ A′) = inf

A∈A

1

n

n∑
i=1

1(Xi ∈ A, Ui ⩽ p/P (A)) ⩽ inf
A∈A

1

n

n∑
i=1

1(Xi ∈ A) .

In light of this inequality, in order to show (68), it suffices to show that Z ⩽ p/2, where

Z = p− inf
A′∈A′

1

n

n∑
i=1

1
(
X ′
i ∈ A′) = sup

A′∈A′

1

n

n∑
i=1

{
p− 1

(
X ′
i ∈ A′)} .

Now by Talagrand’s inequality [Bou02, Theorem 2.3], as Var(1(X ′
i ∈ A′)) = p(1− p) ⩽ p for

any i and A′ ∈ A′, for any t ⩾ 0, with probability at least 1− e−t one has

Z ⩽ 2

(
E[Z] +

√
pt

n
+
t

n

)
. (69)
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Hence, if E[Z] ⩽ p/8, we get that with probability at least 1− e−np/80,

Z ⩽ 2
(p
8
+

√
p

n
· np
80

+
np

80n

)
=
p

2

(1
2
+

1√
5
+

1

20

)
<
p

2
.

Hence, it suffices to show that E[Z] ⩽ p/8. First, by symmetrization (e.g. [Kol11, Theo-
rem 2.1]), one has

E[Z] ⩽
2

n
E
[
sup
A′∈A′

n∑
i=1

εi1(X
′
i ∈ A′)

]
, (70)

where ε1, . . . , εn are i.i.d. random variables with P(εi = ±1) = 1/2. Next, it follows from
Hoeffding’s lemma [BLM13, §2.3], together with the maximal inequality from [BLM13, §2.5],
that

E
[
sup
A′∈A′

n∑
i=1

εi1(X
′
i ∈ A′)

∣∣∣X1, . . . , Xn

]
⩽

√√√√2

(
sup
A′∈A′

n∑
i=1

1(X ′
i ∈ A′)

)
logSn(A′) ,

where Sn(A′) = maxx′1,...,x′n |{(1(x
′
i ∈ A′))1⩽i⩽n : A′ ∈ A′}| denotes the n-th shattering number

of A′. Let B = {[0, t] : t ∈ [0, 1]}. By definition of A′, one has Sn(A′) ⩽ Sn(A)Sn(B) ⩽
(n+ 1)Sn(A). In addition, since A is a VC class with VC dimension at most d and n ⩾ d+ 1,
Sauer’s lemma (e.g., [vH14, Lemma 7.12]) implies that Sn(A) ⩽ (en/d)d. Plugging this bound
into the above and applying Jensen’s inequality gives:

Rn = E
[

sup
A′∈A′

n∑
i=1

εi1(X
′
i ∈ A′)

]
= E

[
E
[
sup
A′∈A′

n∑
i=1

εi1(X
′
i ∈ A′)

∣∣∣X1, . . . , Xn

]]

⩽

√√√√2E
[

sup
A′∈A′

n∑
i=1

1(X ′
i ∈ A′)

]
log

[
(n+ 1)

(en
d

)d]
. (71)

On the other hand, since P(X ′
i ∈ A′) = p for every i = 1, . . . , n, another application of the

symmetrization inequality gives:

E
[

sup
A′∈A′

n∑
i=1

1(X ′
i ∈ A′)

]
= np+ E

[
sup
A′∈A′

n∑
i=1

{
1(X ′

i ∈ A′)− P(X ′
i ∈ A′)

}]

⩽ np+ 2E
[

sup
A′∈A′

n∑
i=1

εi1(X
′
i ∈ A′)

]
= np+ 2Rn . (72)

Plugging (72) into (71) and using that n+1 ⩽ en ⩽ (en/d)d, denoting Hn = d log(en/d) we get:

R2
n ⩽ 4(np+ 2Rn)Hn ,

which after solving for this second-order inequality in Rn gives

Rn ⩽ 4Hn + 2
√
4H2

n + npHn .

Hence, recalling from (70) that E[Z] ⩽ 2Rn/n, we get whenever Hn ⩽ εnp with ε = 1/1160:

E[Z] ⩽
8Hn

n
+

4
√

4H2
n + npHn

n
⩽

(
8ε+ 4

√
4ε2 + ε

)
p <

p

8
,

which is precisely what we aimed to show. It thus remains to show that Hn ⩽ np/1160, namely

d log(en/d)

n
⩽

p

1160
.

But this follows from the assumption (67), together with the basic fact that if u, v ⩾ 1 satisfy
u ⩾ (1 + e−1)v log

(
(e+ 1)v

)
, then log(eu)/u ⩽ 1/v (applied to u = n/d and v = 1160/p).
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To apply Lemma 10 to the sets {x ∈ Rd : |⟨u, x⟩| ⩽ m, |⟨v, x⟩| ⩾M}, we had to lower-bound
the probability of these events. This bound can be deduced from the fact that the lower bound
on these event provided for u = u∗ by Assumption 3 can be extended to all u in a neighborhood
of u∗ as shown in the following result.

Lemma 11. Suppose that Assumptions 1 and 3 hold with respective parameters K ⩾ e, u∗ ∈
Sd−1, c ⩾ 1 and η ∈ (0, 1). Then for all u, v ∈ Sd−1 such that

∥u− u∗∥ ⩽
2η

K log(c(c+ 1)/η)
and ⟨u∗, v⟩ ⩾ 0 , (73)

one has

P
(
|⟨u,X⟩| ⩽ (c+ 1)η ; |⟨v,X⟩| ⩾

max
{
η, ∥u∗ − v∥

}
c+ 1

)
⩾

η

c+ 1
.

Proof. Let u, v ∈ Sd−1 satisfy (73). The triangle inequality

|⟨u,X⟩| ⩽ |⟨u∗, X⟩|+ |⟨u− u∗, X⟩|

implies that

P
(
|⟨u,X⟩| ⩽ (c+ 1)η ; |⟨v,X⟩| ⩾

max
{
η, ∥u∗ − v∥

}
c

)
⩾ P

(
|⟨u∗, X⟩| ⩽ cη ; |⟨v,X⟩| ⩾

max
{
η, ∥u∗ − v∥

}
c

)
− P

(
|⟨u− u∗, X⟩| > η

)
. (74)

Next, on the one hand, Assumption 3 asserts that

P
(
|⟨u∗, X⟩| ⩽ cη ; |⟨v,X⟩| ⩾

max
{
η, ∥u∗ − v∥

}
c

)
⩾
η

c
,

and on the other hand, Assumption 1 together with Point 1 in Lemma 35 implies that

P
(∣∣⟨u− u∗, X⟩

∣∣ > η
)
⩽ exp

(
− 2η

K∥u− u∗∥

)
⩽ exp

(
− log

(
c(c+ 1)/η

))
⩽

η

c(c+ 1)
.

Plugging the previous two inequalities into (74) concludes the proof, since η
c −

η
c(c+1) =

η
c+1 .

6.3 Proof of Theorem 6 (Gaussian design)

In this section, we let

Θ =
{
θ ∈ Rd : ∥θ − θ∗∥H ⩽

1

100
√
B

}
.

All along the section, we denote by C > 0 absolute constants, whose value may change from line
to line. This section is devoted to the proof of Theorem 6.

We have to prove that the smallest eigenvalue of the matrices H−1/2Ĥn(θ)H
−1/2 is bounded

from below or, equivalently, that

∀v ∈ Sd−1,∀θ ∈ Θ, ⟨H−1/2Ĥn(θ)H
−1/2v, v⟩ ⩾ 1/C .

For this, we use the PAC-Bayes inequality, see e.g. [Cat07]. This inequality involves the Kullback-
Leibler divergence between two probability measures. Recall that, if µ and ν denote two proba-
bility measures on a same space Ω such that ν is dominated by µ, the Kullback-Leibler divergence
from ν to µ is defined by

D(ν∥µ) =
∫
Ω
log

(dν
dµ

)
dν . (75)
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Lemma 12 (PAC-Bayes inequality). Let (E, E , π) denote a probability space and Z = (Z(ω))ω∈E
a measurable real process indexed by ω ∈ E. Let Z1, . . . , Zn be independent copies of the process
Z. Let also λ > 0 be such that E exp(λZ(ω)) < ∞ for every ω ∈ Ω. For any t > 0, with
probability at least 1− e−t, simultaneously for every probability measure ρ on E dominated by π,

1

n

n∑
i=1

∫
E
Zi(ω)ρ(dω) ⩽

1

λ

∫
E
log

(
E
[
eλZ(ω)

])
ρ(dω) +

D(ρ∥π) + t

λn
. (76)

We will refer to the distribution π as the “prior”, and to the smoothing distributions ρ as the
“posteriors”. We will apply the PAC-Bayes inequality with index set E = Θ′ × Sd−1, where

Θ′ =
{
θ′ ∈ Rd : ∥θ′ − θ∗∥H ⩽

1

10
√
B

}
⊃ Θ ,

and process Zi(ω) = Zi(θ
′, v′) defined by

Zi(θ
′, v′) = −1

{
|⟨θ′, Xi⟩| ⩽ 1; ∥Xi∥ ⩽ 2

√
d
}〈

H−1/2v′, Xi

〉2
. (77)

The prior π and posteriors ρθ,v = ρθ ⊗ ρv on E will be defined during the proof.
An interesting fact is that the PAC-Bayes inequality applied to this process will show a uni-

form lower bound on the Hessian, hence, a lower bound on the process ⟨H−1/2Ĥn(θ)H
−1/2v, v⟩

with respect to both θ and v. To see why, we start by bounding from bellow

⟨H−1/2Ĥn(θ)H
−1/2v, v⟩ = 1

n

n∑
i=1

σ′(⟨θ,Xi⟩)⟨H−1/2v,Xi⟩2

⩾
1

n

n∑
i=1

σ′(⟨θ,Xi⟩)1
{
∥Xi∥ ⩽ 2

√
d
}
⟨H−1/2v,Xi⟩2

In the next paragraph, we will associate to each θ ∈ Θ a probability measure ρθ on Θ′ and prove
a key smoothing lemma (Lemma 13), which allows us to further bound from below:

⟨H−1/2Ĥn(θ)H
−1/2v, v⟩ ⩾ 1

n

n∑
i=1

1

15

∫
Rd

1
{
|⟨θ′, Xi⟩| ⩽ 1, ∥Xi∥ ⩽ 2

√
d
}
ρθ(dθ

′)⟨H−1/2v,Xi⟩2

=
1

15

∫
Rd

1

n

n∑
i=1

−Zi(θ′, v)ρθ(dθ′) . (78)

Then, in the following paragraphs, we compute all quantities appearing in the PAC-Bayes in-
equality. We bound first the Laplace transform, then the smoothed process in the left-hand side
of (76) and finally the Kullback-Leibler divergence. A last paragraph gathers all the results and
optimizes the choice of λ to conclude the proof.
Remark 3. The expected value of the minorizing process appearing in (78), namely E[−Zi(θ̃, v)],
is equal to ⟨H−1/2H̃(θ′)H−1/2v, v⟩, where the matrix H̃(θ) is defined by

H̃(θ) = E
[
1
{
|⟨θ,X⟩| ⩽ 1; ∥X∥ ⩽ 2

√
d
}
XX⊤

]
. (79)

It is proved in Lemma 18 that H̃(θ) ≽ 0.05 ·Hθ, where

Hθ =
1

B3
uu⊤ +

1

B
(Id − uu⊤) . (80)

Then, in Lemma 19, it is proved that Hθ ≽ 0.97H. This means that H̃(θ) ≽ 0.04H, so
H−1/2H̃(θ)H−1/2 ≽ 0.04Id and therefore, for any v ∈ Sd−1,

E
[
− Zi(θ, v)

]
= ⟨H−1/2H̃(θ)H−1/2v, v⟩ ⩾ 0.04 . (81)
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The posteriors ρθ. Let us first define the posterior ρθ. For any θ ∈ Θ, let u = θ/∥θ∥.

Definition 2. For any θ ∈ Θ, we let ρθ denote the distribution of θ′ = Uθ + Z, where

(i) U,Z are independent;

(ii) U is uniform over [0.99, 1.01];

(iii) the distribution of Z is the conditional distribution of Z ′ ∼ N(0, (Id − uu⊤)/(2 · 1002 · d))
given that ∥Z ′∥ ⩽ 1/100.

The motivation behind the choice of the posterior (or smoothing distribution) ρθ in Def-
inition 2 is twofold. On the one hand, it is sufficiently spread out that, every θ ∈ Θ, the
Kullback-Leibler divergence between ρθ and a suitably chosen prior is controlled: Lemma 16
below show that it is at most of order d, with no dependence on B. At the same time, it is
sufficiently localized around θ (in particular, along the direction of θ itself) that smoothing an
indicator with respect to this distribution provides a lower bound on the sigmoid, as shown in
Lemma 13 below.

We note in passing that such a lower bound would not hold if instead of being uniform
on [0.99, 1.01], the variable U in Definition 2 was Gaussian (say, if U ∼ N(1, 0.012)), as in
this case the smoothed indicator would be of order (1 + |⟨θ, x⟩|)−1, which is much larger than
σ′(|⟨θ, x⟩|). This contrasts with prior applications of the PAC-Bayes method to the study of
random matrices [Cat16, Oli16, Mou22, Zhi24], which essentially rely on Gaussian or truncated
Gaussian posteriors.

Lemma 13. For every θ ∈ Θ, the measure ρθ is supported on Θ′. In addition, for every x ∈ Rd
such that ∥x∥ ⩽ 2

√
d, one has

σ′(⟨θ, x⟩) ⩾ 1

15

∫
Rd

1
{
|⟨θ′, x⟩| ⩽ 1

}
ρθ(dθ

′) . (82)

Proof. We start with the first claim. Let θ ∈ Θ and θ′ = Uθ+Z ∼ ρθ, with U,Z distributed as
in Definition 2. By Lemma 19, as ∥θ − θ∗∥H ⩽ 1/100

√
B, if θ′ ∼ ρθ then

∥θ′ − θ∥H ⩽
1

0.97
∥θ′ − θ∥Hθ

=
1

0.97

√
(U − 1)2∥θ∥2

B3
+

∥Z∥2
B

.

Now |U − 1| ⩽ 0.01, ∥θ∥/B ⩽ 1.01 and ∥Z∥ ⩽ 1/100 a.s., so by Lemma 17, as θ ∈ Θ,

∥θ′ − θ∥H ⩽
0.015√
B

and ∥θ′ − θ∗∥H ⩽
0.025√
B

. (83)

We now prove inequality (82). Let x ∈ Rd be such that ∥x∥ ⩽ 2
√
d. We have∫

Rd

1{|⟨θ′, x⟩| ⩽ 1}ρθ(dθ′) = E
[
P (|U⟨θ, x⟩+ ⟨Z, x⟩| ⩽ 1|U)

]
.

If Z ′ ∼ N(0, (Id − uu⊤)/(2 · 1002 · d)), we have, as P(∥Z ′∥ ⩽ 1/100) ⩾ 1− 1002E∥Z ′∥2 ⩾ 3/4,

P (|U⟨θ, x⟩+ ⟨Z, x⟩| ⩽ 1|U) ⩽
4

3
P
(
|U⟨θ, x⟩+ ⟨Z ′, x⟩| ⩽ 1|U

)
.

Now, if g is a standard Gaussian random variable, for any a ∈ R, b > 0 and σ > 0

P(|σg − a| ⩽ 1) ⩽ 2P(g > (|a| − 1)+/σ) ⩽ exp

(
−

(|a| − 1)2+
2σ2

)
⩽ C exp(−b|a|) ,
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with C = exp
(
σ2b2

2 + b
)
.

We apply this result with

σ2 = Var(⟨g′, x⟩) ⩽ ∥x∥2

2 · (100)2 · d
⩽

1

5000
, b =

1

U
⩽

1

0.99
, a = U⟨θ, x⟩ .

This shows that

P (|U⟨θ, x⟩+ ⟨Z, x⟩| ⩽ 1|U) ⩽ 3.7 exp
(
− |⟨θ, x⟩|

)
⩽ 15σ′(⟨θ, x⟩) .

This proves the lower bound (82).

Upper bound on the Laplace transform. In this section, we prove the following upper
bound on the Laplace transfom of Z(θ′, v′), for θ′ ∈ Θ′ and v′ ∈ Sd−1. It controls the Laplace
transform in the PAC-Bayes inequality for any posterior distribution supported on Θ′.

Lemma 14. For any θ′ ∈ Rd such that ∥θ′ − θ∗∥H ⩽ 1/10
√
B and any v′ ∈ Sd−1, we have

logE exp(λZ(θ′, v′)) ⩽ −0.04λ+ 2.2λ2B .

Proof. Let λ > 0, θ′ such that ∥θ′ − θ∗∥H ⩽ 1/10
√
B and v′ ∈ Sd−1. As, for any s > 0,

e−s ⩽ 1− s+ s2/2, one has

E exp(λZi(θ
′, v′)) ⩽ 1 + λEZi(θ′, v′) +

λ2

2
EZi(θ′, v′)2.

By (81), one has EZi(θ′, v′) ⩽ −0.04. Moreover, by Lemma 19,

EZi(θ′, v′)2 ⩽ E
[
1
{
|⟨θ′, Xi⟩| ⩽ 1

}
⟨H−1/2v′, Xi⟩4

]
⩽ 1.7E

[
1
{
|⟨θ′, Xi⟩| ⩽ 1

}
⟨H−1/2

θ′ v′, Xi⟩4
]
.

We have, for u′ = θ′/∥θ′∥,

H
−1/2
θ′ v′ = ⟨u′, v′⟩B3/2u′ +

√
B(v′ − ⟨v′, u′⟩u′) .

As ⟨u′, Xi⟩ and ⟨v′ − ⟨v′, u′⟩u′, Xi⟩ are independent Gaussian random variables, we have

EZi(θ′, v′)2 ⩽ 1.7E
[
1
{
|⟨θ′, Xi⟩| ⩽ 1

}
(B6⟨u′, Xi⟩4 + 6B4⟨u′, Xi⟩2 +B2)

]
.

Next, using that |⟨θ′, X⟩| = ∥θ′∥ · |⟨u′, X⟩| and that the density of ⟨u′, Xi⟩ ∼ N(0, 1) is upper-
bounded by 1/

√
2π, we bound for k ∈ {0, 1, 2}:

E
[
1
{
|⟨θ′, Xi⟩| ⩽ 1

}
⟨u′, Xi⟩2k

]
⩽

1√
2π

∫
R
1
{
|x| ⩽ ∥θ′∥−1

}
x2kdx =

√
2

π

1

(2k + 1)∥θ′∥2k+1
.

This yields EZi(θ′, v′)2 ⩽ 4.4B and thus, the result.

Bounding the linear term. Let us first define the posterior ρv on Sd−1.

Definition 3. Let ε ∈ (0, 1). For any v ∈ Sd−1, let ρv = U
(
C(v, ε)

)
denote the uniform

distribution on the spherical cap of width ε around v, that is

C(v, ε) =
{
v′ ∈ Sd−1 : ⟨v, v′⟩ ⩾ 0, | sin(v, v′)| =

√
1− ⟨v, v′⟩2 ⩽ ε

}
. (84)

In this paragraph, we prove the following lower bound on the linear term.
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Lemma 15. Let ρθ,v = ρθ ⊗ ρv denote the posterior distribution defined as the product of the
posterior ρθ of Definition 2 and the posterior ρv of Definition 84. Then,

1

n

n∑
i=1

∫
Θ′×Sd−1

Zi(θ
′, v′)ρθ,v(dθ

′, dv′) ⩾ −15
〈
H−1/2Ĥn(θ)H

−1/2v, v
〉
− 12000ε2BR , (85)

where R = supθ∈Θ
1
n

∑n
i=1 exp

(
− 0.99|⟨θ,Xi⟩|

)
1
(
∥Xi∥ ⩽ 2

√
d
)

.

Proof. Recall that, by Lemma 13,

− 1

n

n∑
i=1

σ′(⟨θ,Xi⟩)1
{
∥Xi∥ ⩽ 2

√
d
}
⟨Xi, H

−1/2v′⟩2 ⩽ 1

15n

n∑
i=1

∫
Θ′
Zi(θ

′, v′)ρθ(dθ
′) .

Therefore, our main task is to bound from above

1

n

n∑
i=1

∫
Sd−1

σ′(⟨θ,Xi⟩)1
{
∥Xi∥ ⩽ 2

√
d
}
⟨Xi, H

−1/2v′⟩2ρv(dv′)

=

∫
C(v,ε)

⟨H−1/2

(
1

n

n∑
i=1

σ′(⟨θ,Xi⟩)1
{
∥Xi∥ ⩽ 2

√
d
}
XiX

⊤
i

)
H−1/2v′, v′⟩ρv(dv′) .

Using the computations from [Mou22, Eqs. (42) and (43)] and Fact 6, we obtain∫
C(v,ε)

⟨H−1/2Hn(θ)H
−1/2v′, v′⟩ρv(dv′)

⩽
〈
H−1/2Ĥn(θ)H

−1/2v, v
〉
+

2ε2

d− 1
Tr

(
H−1/2Hn(θ)H

−1/2
)
, (86)

where Hn(θ) =
1
n

∑n
i=1 σ

′(⟨θ,Xi⟩)1
{
∥Xi∥ ⩽ 2

√
d
}
XiX

⊤
i ≼ Ĥn(θ).

Thus, (85) is proved if we show that

Tr
(
H−1/2Hn(θ)H

−1/2
)
⩽ 3000

Bd

n

n∑
i=1

exp
(
− 0.99|⟨θ,Xi⟩|

)
1
(
∥Xi∥ ⩽ 2

√
d
)
. (87)

First, by Lemma 19, for all θ ∈ Θ, H−1 ≼ 1.03H−1
θ , so

Tr
(
H−1/2Hn(θ)H

−1/2
)
⩽ 1.03Tr

(
H

−1/2
θ Hn(θ)H

−1/2
θ

)
.

Now, as ∥Xi − ⟨u,Xi⟩u∥2 ⩽ ∥Xi∥2,

Tr
(
H−1/2Hn(θ)H

−1/2
)

=
1.03

n

n∑
i=1

σ′
(
⟨θ,Xi⟩

)
1
{
∥Xi∥ ⩽ 2

√
d
}(
B3⟨u,Xi⟩2 +B∥Xi − ⟨u,Xi⟩u∥2

)
⩽

1.03B

n

n∑
i=1

σ′
(
⟨θ,Xi⟩

)
1
{
∥Xi∥ ⩽ 2

√
d
}(
B2⟨u,Xi⟩2 + 4d

)
.

Now, we use the inequalities σ′(t) ⩽ e−|t|, for all t ⩾ 0, t2e−t ⩽ (200/e)2e−0.99t and, by
Lemma 17, ∥θ∥ ⩾ 0.99B to get

B2⟨u,Xi⟩2σ′
(
⟨θ,Xi⟩

)
⩽ 5550 exp

(
− 0.99|⟨θ,Xi⟩|

)
.

This shows (87) with as d ⩾ 2 and thus (85).
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Upper bounds on the Kullback-Leibler divergence. In this section, we define the prior
distribution π and bound from above the Kullback-Leibler divergence term D(ρθ,v∥π), where
ρθ,v was defined in Lemma 15.

Let us start with the definition of the prior π. For any µ ∈ Rd, Σ ≽ 0 and any measurable
subset S ⊂ Rd, let TN(µ,Σ, S) denote the Gaussian distribution N(µ,Σ) conditioned on S, that
is the distribution with density

dν =
1S
γ(S)

dγ , (88)

where γ is the Gaussian distribution N(µ,Σ).

Definition 4. The prior distribution π on Θ × Sd−1 is the product π = πΘ ⊗ πS , where πS is
the uniform distribution on the unit sphere and πΘ = TN(θ∗,Γ,Θ′), for

Γ =
1

1002

(
B2u∗u∗⊤ +

1

2d
(Id − u∗u∗⊤)

)
.

The purpose of this section is to show the following upper bound on the Kullback divergence
between ρθ,v and π.

Lemma 16. Let θ ∈ Θ and v ∈ Sd−1. Let ρθ,v denote the prior defined in Lemma 15 and π
denote the prior distribution of Definition 4. Then,

D(ρθ,v∥π) ⩽
(
6.5 + log

(
1 +

2

ε

))
d . (89)

Proof. Since the prior and all posterior distributions are product measures, the divergence writes

D(ρθ,v∥π) = D(ρv∥πS) +D(ρθ∥πΘ) .

On one hand, we have

D(ρv∥πS) =
∫
Sd−1

log
( dρv
dπS

)
dρv = log

(
Vold−1(S

d−1)

Vold−1(C(v, ε))

)
.

By [Mou22, §4.4] and Fact 6, this yields

D(ρv∥πS) ⩽ d log
(
1 +

2

ε

)
. (90)

It remains to bound D(ρθ∥πΘ), which is more delicate. We first define an intermediate
distribution ρ̃θ and show, see (93), that

D(ρθ∥πΘ) ⩽ 1.5(log(1.5) +D(ρ̃θ∥πΘ)) .

Then, we bound this last divergence. The intermediate distribution ρ̃θ = TN(θ,Γθ, Eθ) is the
Gaussian distribution N(θ,Γθ) conditioned on the ellipsoid Eθ = {θ0 : ∥θ0 − θ∥H ⩽ 0.02√

B
}, chosen

such that, by Lemma 13,

Supp (ρθ) ⊂ Supp (ρ̃θ) ⊂ Θ′ = Supp (πΘ) .

For any θ ∈ Θ, the covariance Γθ is defined as

Γθ =
1

1002

(
B2uu⊤ +

1

2d
(Id − uu⊤)

)
, u =

θ

∥θ∥
.

Before we bound the Kullback-Leibler divergences D(ρθ∥πΘ), we check the following facts.
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1. the density of ρθ satisfies dρθ
dρ̃θ

⩽ 1.5,

2. the normalizing factors satisfy γθ(Eθ) ⩾ 0.5 and γ(Eθ) ⩾ 0.3, where γθ = N(θ,Γθ) and
γ = N(θ∗,Γ).

Let us briefly check these facts. Start with point 1. We have on one hand that the density
fθ of ρθ satisfies, for every θ0 = tu+ z,

fθ(θ0) ⩽
1

p0.02∥θ∥

((100)2d
π

) d−1
2

exp
(
− d∥z∥2

1002

)
1
(
t/∥θ∥ ∈ [0.99, 1.01]; ∥z∥ ⩽ 1/100

)
and on the other hand ρ̃θ has density given for every θ0 = tu+ z by

f̃θ(θ0) =
1

γθ(Eθ)
· e

− (t−∥θ∥)2

2(B/100)2

B/100
· (2 · (100)

2d)
d−1
2

(2π)d/2
exp

(
− (100)2d∥z∥2

)
1(θ0 ∈ Eθ) .

For any t such that |t/∥θ∥ − 1| ⩽ 1/100 and θ ∈ Θ so, by Lemma 17, ∥θ∥/B ∈ [0.99, 1.01], we
deduce that

fθ(θ0)

f̃θ(θ0)
⩽

1

2p

B

∥θ∥

√
π

2
γθ(Eθ) exp

( (t− ∥θ∥)2

2(B/100)2

)
1

(
t

∥θ∥
∈ [0.99, 1.01]; θ0 ∈ Eθ

)
⩽ 1.5 · 1(θ0 ∈ Eθ) .

(91)
Let us move to point 2. Fix θ ∈ Θ so by Lemma 17, ∥u − u∗∥ ⩽ 1/50B. We have, if

N ∼ N(θ,Γθ), by Chebychev’s inequality,

1− γθ(Eθ) = P
(
∥N − θ∥H >

0.02√
B

)
⩽
BE[∥N − θ∥2H ]

0.022
.

Besides,

E∥N − θ∥2H = Tr
(
H1/2ΓθH

1/2
)
=

1

1002

((
B2 − 1

2d

)
∥H1/2u∥2 + 1

2d
Tr(H)

)
⩽

1

1002

((
B2 − 1

2d

)(
1

B3
+

∥u− u∗∥2

2B

)
+

1

2d

(
1

B3
+
d− 1

B

))
⩽

2

1002B
.

This shows the first lower bound. For the second one, we proceed similarly: Let N ∼ N(θ∗,Γ)
so, by Chebychev’s inequality,

1− γ(Eθ) = P
(
∥N − θ∥H >

0.02√
B

)
⩽
BE[∥N − θ∥2H ]

0.022
.

Besides, as θ ∈ Θ,

E∥N − θ∥2H = ∥θ − θ∗∥2H +Tr
(
H1/2ΓH1/2

)
⩽

1

1002B
+

1

1002

((
B2 − 1

2d

)
∥H1/2u∗∥2 + 1

2d
Tr(H)

)
=

1

1002B

(
2 +

d− 1

2d

)
⩽

2.5

1002B
. (92)

This concludes the proof of Point 2.
We are now in position to bound the Kullback-Leibler divergence D(ρθ∥πΘ). By point 1, we

have

D(ρθ∥πΘ) =
∫
Eθ

log

(
dρθ
dπΘ

)
dρθ ⩽

∫
Eθ

log

(
1.5dρ̃θ
dπΘ

)
1.5dρ̃θ = 1.5(log 1.5 +D(ρ̃θ∥πΘ)) . (93)
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Now, denote γθ = N(θ,Γθ) and γ = N(θ∗,Γ) so ρ̃θ and πΘ are the restrictions of γθ and γ. We
have

D(ρ̃θ∥πΘ) =
∫
Eθ

dγθ
γθ(Eθ)

log

(
dγθ/γθ(Eθ)
dγ/γ(Eθ)

)
+ log

(
γ(Θ′)

γ(Eθ)

)
.

Using Lemma 20 and Point 2 to bound the first term in the left-hand-side and Point 2 for the
second, we get,

D(ρθ∥πΘ) ⩽ 1.5 log(5) + 3D(γθ∥γ) . (94)

Finally, we compute the divergence from γθ to γ. Recall that, as det(Γ) = det(Γθ), it is
equal to

D(γθ∥γ) =
1

2

(
Tr(Γ−1/2ΓθΓ

−1/2) + ∥θ − θ∗∥2Γ−1 − d
)
.

As Γ−1 ≼ 2(100)2dBH, we have on one side, by (92),

Tr(Γ−1/2ΓθΓ
−1/2) ⩽ 2(100)2dBTr(H1/2ΓθH

1/2) ⩽ 3d ,

and, on the other side,

∥θ − θ∗∥2Γ−1 ⩽ 2(100)2dB∥θ − θ∗∥2H ⩽ 2d .

Thus, D(γθ∥γ) ⩽ 2d and, by (94),

D(ρθ∥πΘ) ⩽ 6.5d . (95)

Combining this inequality with (90) concludes the proof.

Conclusion. We apply PAC-Bayes inequality of Lemma 12 to the variables Zi(θ0, v′) defined
in (77). We use the upper bound on the Laplace transform given in Lemma 14, the one on the
Kullback-Leibler divergence given in Lemma 16 and the lower bound on the linear term obtained
in Lemma 15 to obtain that, for all t > 0, with probability at least 1− e−t, simultaneously for
every θ ∈ Θ and v ∈ Sd−1,

15
〈
H−1/2Ĥn(θ)H

−1/2v, v
〉
⩾ 0.04− 2.2λB −

(
6.5 + log

(
1 + 2ε−1

))
d+ t

λn
− 12000ε2BR , (96)

with R = supθ∈Θ
1
n

∑n
i=1 exp

(
− 0.99|⟨θ,Xi⟩|

)
1
(
∥Xi∥ ⩽ 2

√
d
)
. As θ ∈ Θ, by Lemma 17,

∥θ∥ ⩾ 0.99B and
√
1− ⟨u, u∗⟩2 ⩽ 1/50B, so {θ/∥θ∥ : θ ∈ Θ} ⊂ C(u∗, 1/50B). Therefore, if

u = θ/∥θ∥,

R ⩽ sup
u∈C(u∗,1/50B)

1

n

n∑
i=1

exp
(
− (0.99)2B|⟨u,Xi⟩|

)
1
(
∥Xi∥ ⩽ 2

√
d
)
.

The right-hand side can be bounded using Lemma 21, we have, for any t > 0 such that n ⩾
1.1B(d+ t), with probability larger than 1− e−t,

sup
u∈C(u∗,1/50B)

1

n

n∑
i=1

exp
(
− (0.99)2B |⟨u,Xi⟩|

)
1
{
∥Xi∥ ⩽ 2

√
d
}
⩽

4

B
.

Plugging this bound into (96) shows that, for any λ > 0, with probability 1− 2e−t

15
〈
H−1/2Ĥn(θ)H

−1/2v, v
〉
⩾ 0.04− 2.2λB −

(
6.5 + log

(
1 + 2ε−1

))
d+ t

λn
− 48000ε2. (97)
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Choosing ε = 1/2200 so 48000ε2 ⩽ 0.01 and 6.5 + log(1 + 2ε−1) ⩽ 17.2 shows that

15
〈
H−1/2Ĥn(θ)H

−1/2v, v
〉
⩾ 0.03− 2.2λB − 17.2d+ t

λn
. (98)

Finally, we choose λ =
√
8(d+ t)/n to get

15
〈
H−1/2Ĥn(θ)H

−1/2v, v
〉
⩾ 0.03− 2

√
8(d+ t)

n
.

For n ⩾ 320000(d+ t), this last lower bound is larger than 0.02, which concludes the proof.

6.4 Technical lemmas for the proof of Theorem 6

This section gathers technical tools used repeatedly in the proofs.

Lemma 17. Let θ∗ ∈ Rd be such that B = ∥θ∗∥ > 1, let H = B−3u∗u
⊤
∗ + B−1(Id − u∗u

⊤
∗ )

and let r ∈ (0, 1). Then, for every θ ∈ Rd such that ∥θ − θ∗∥H ⩽ r/
√
B, u∗ = θ∗/∥θ∗∥ and

u = θ/∥θ∥,

1. (1− r)B ⩽ ∥θ∥ ⩽ (1 + r)B,

2. ∥θ−⟨u∗,θ⟩u∗∥
∥θ∥ = ∥u− ⟨u∗, u⟩u∗∥ ⩽ r

(1−r)B ,

3. ∥u− u∗∥ ⩽
√
2r

(1−r)B .

Proof. The constraint ∥θ − θ∗∥H ⩽ r/
√
B can be written

(⟨θ, u∗⟩ −B)2

B3
+

∥θ − ⟨θ, u∗⟩u∗∥2

B
⩽
r2

B
. (99)

For the upper bound in the first point, remark first that θ = (1 + r)θ∗ satisfies (99) and
∥(1+ r)θ∗∥ = (1+ r)B. Let now θ be such that ∥θ− θ∗∥H ⩽ r/

√
B and let ∥θ− ⟨θ, u∗⟩u∗∥ = α.

By (99), (⟨θ, u∗⟩ −B)2 ⩽ B(r2 − α2). Therefore, as B > 1,

∥θ∥2 = ⟨θ, u∗⟩2 + ∥θ − ⟨θ, u∗⟩u∗∥2 ⩽ B2(1 +
√
r2 − α2)2 + α2

⩽ B2(1 + 2
√
r2 − α2 + r2) ⩽ B2(1 + r)2 = ∥(1 + r)θ∗∥2 .

The lower bound is obtained using the same arguments.
The second point follows from the remark that by (99), we have ∥θ − ⟨θ, u∗⟩u∗∥ ⩽ r and

from the first point ∥θ∥ ⩾ (1− r)B.
For the last point, we first remark that, as |⟨θ, u∗⟩ − B| < rB, we have ⟨u, u∗⟩ > 0. Then,

we write

∥θ − ⟨θ, u∗⟩u∗∥2 = ∥θ∥2∥u− ⟨u, u∗⟩u∗∥2 = ∥θ∥2(1− ⟨u, u∗⟩2) .

Therefore, by (99),

∥u− u∗∥2 = 2(1− ⟨u, u∗⟩) ⩽ 2(1− ⟨u, u∗⟩2) ⩽ 2r2

∥θ∥2
.

The proof is concluded by Point 1.

The second lemma proves a lower bound on the expectation of Zi(θ, v).
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Lemma 18. For any θ ∈ Rd, let

H̃(θ) = E
[
1
{
|⟨θ,X⟩| ⩽ 1; ∥X∥ ⩽ 2

√
d
}
XX⊤

]
.

For any θ such that ∥θ − θ∗∥H ⩽ 1/10
√
B, we have

H̃(θ) ≽ 0.05 ·Hθ

Proof. Let u = θ/∥θ∥ and v ∈ Sd−1. We want to show that

⟨H̃(θ)v, v⟩ = E
[
1
{
|⟨θ,X⟩| ⩽ 1; ∥X∥ ⩽ 2

√
d
}
⟨v,X⟩2

]
⩾ 0.05⟨Hθv, v⟩ .

write v = ⟨v, u⟩u+(v−⟨v, u⟩u). As ⟨θ,X⟩ is independent of ⟨v−⟨v, u⟩u,X⟩ and ⟨v−⟨v, u⟩u,X⟩ ∼
N(0, 1− ⟨v, u⟩2), we have

⟨H̃(θ)v, v⟩ = ⟨u, v⟩2E
[
1
{
|⟨θ,X⟩| ⩽ 1; ∥X∥ ⩽ 2

√
d
}
⟨u,X⟩2

]
+ (1− ⟨u, v⟩2)E[1

{
|⟨θ,X⟩| ⩽ 1; ∥X∥ ⩽ 2

√
d
}
] . (100)

It remains to bound from below both expectations in the right-hand side term. Let us start with
the second one, we have ∥X∥2 = ⟨u,X⟩2 + ∥X − ⟨u,X⟩u∥2, where X − ⟨u,X⟩u is a Gaussian
vector independent from ⟨u,X⟩. Thus, if ∥X − ⟨u,X⟩u∥2 ⩽ 4d− 1/∥θ∥2 and |⟨u,X⟩| ⩽ 1/∥θ∥,
then |⟨θ,X⟩| ⩽ 1; ∥X∥ ⩽ 2

√
d, so

E
[
1
{
|⟨θ,X⟩| ⩽ 1; ∥X∥ ⩽ 2

√
d
}]

⩾ P(|⟨u,X⟩| ⩽ 1/∥θ∥)P(∥X − ⟨u,X⟩u∥2 ⩽ 4d− 1/∥θ∥2) .

By Lemma 17, as ∥θ − θ∗∥H ⩽ 1/10
√
B,

1

2
⩽ 0.9 ·B ⩽ ∥θ∥ ⩽ 1.1 ·B . (101)

By Markov’s inequality, we have thus

P(∥X − ⟨u,X⟩u∥2 ⩽ 4d− 1/∥θ∥2) ⩾ 1− d− 1

4d− 1/∥θ∥2
⩾

3

4
.

As x 7→ x exp(−x2) is non-decreasing on [0, 1/2],

P(|⟨u,X⟩| ⩽ 1/∥θ∥) ⩾ 2

∥θ∥
exp(−∥θ∥2/2)√

2π
⩾

0.07

B
.

Thus

E[1
{
|⟨θ,X⟩| ⩽ 1; ∥X∥ ⩽ 2

√
d
}
] ⩾

0.05

B
.

We use the same arguments to bound the first expectation in the right hand side of (100), we
get

E
[
1
(
|⟨θ,X⟩| ⩽ 1; ∥X∥ ⩽ 2

√
d
)
⟨u,X⟩2

]
⩾

3

4
E
[
1{|⟨u,X⟩| ⩽ 1/∥θ∥} ⟨u,X⟩2

]
.

We have

E[1{|⟨u,X⟩| ⩽ 1/∥θ∥} ⟨u,X⟩2] ⩾ exp(−1/2∥θ∥2)√
2π

∫ 1/∥θ∥

−1/∥θ∥
x2dx

=

√
2

π

exp(−1/2∥θ∥2)
3∥θ∥3

⩾
0.18

B3
.
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Thus

E
[
1
(
|⟨θ,X⟩| ⩽ 1; ∥X∥ ⩽ 2

√
d
)
⟨u,X⟩2

]
⩾

0.1

B3
.

Plugging these bounds into (100) yields

⟨H̃(θ)v, v⟩ ⩾ 0.05

(
2⟨u, v⟩2

B3
+

(1− ⟨u, v⟩2)
B

)
⩾ 0.05⟨Hθv, v⟩ .

Lemma 19. Let r ∈ [0, 1/10]. For every θ ∈ Rd such that ∥θ − θ∗∥H ⩽ r/
√
B, we have

(1− 2.35r)H ≼ Hθ ≼ (1 + 2.35r)H .

Proof. Let v ∈ Sd−1, u = θ/∥θ∥, u∗ = θ∗/∥θ∗∥, we want to compare

⟨Hv, v⟩ = 1

B3
⟨u∗, v⟩2 + 1

B
(1− ⟨u∗, v⟩2), ⟨Hθv, v⟩ =

1

B3
⟨u, v⟩2 + 1

B
(1− ⟨u, v⟩2) .

We have

|⟨v, u⟩| ⩽ |⟨v, u∗⟩|+ ∥u− ⟨u, u∗⟩u∗∥∥v − ⟨v, u∗⟩u∗∥ ,
v − ⟨u, v⟩u = (v − ⟨u∗, v⟩u∗)− ⟨v − ⟨u∗, v⟩u∗, u⟩u+ ⟨u∗, v⟩(u∗ − ⟨u, u∗⟩u) .

By Lemma 17, ∥u − ⟨u, u∗⟩u∗∥ ⩽ r
(1−r)B . Using Cauchy-Schwarz inequality and (a + b)2 ⩽

(1 + r)a2 + (1 + r−1)b2, we deduce

⟨u, v⟩2 ⩽ (1 + r)

(
⟨v, u∗⟩2 + r

(1− r)2B2
(1− ⟨v, u∗⟩2)

)
,

1− ⟨u, v⟩2 ⩽ (1 + r)

(
(1− ⟨v, u∗⟩2) + r

(1− r)2B2
⟨v, u∗⟩2

)
.

Hence,

⟨Hθv, v⟩ ⩽ (1 + r)

(
1 + r(1− r)−2

B3
⟨u, v⟩2 + 1 + r(1− r)−2B−4

B
(1− ⟨u, v⟩2)

)
⩽ (1 + r)(1 + r(1− r)−2)⟨Hv, v⟩ ⩽ (1 + 2.35r)⟨Hv, v⟩ ,

where the last inequality holds as r ⩽ 0.1. The lower bound is obtained using similar arguments.

Lemma 20. Let P,Q be probability measures and A an event such that P(A) > 0. One has

D(P|A∥Q|A) ⩽
1

P(A)
D(P∥Q) .

Proof. Without loss of generality, let us assume that P and Q have densities p and q respectively,
with respect to a common dominating measure µ (e.g. P+Q). Let also p|A and q|A denote their
conditional densities. One has

D(P∥Q) =
∫
A
p log

(p
q

)
dµ+

∫
Ac

p log
(p
q

)
dµ . (102)
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By symmetry we do the computations on the event A.∫
A
p log

(p
q

)
dµ = P(A)

∫
A

p

P(A)
log

(
p/P(A)

q/Q(A)
· P(A)
Q(A)

)
= P(A)

∫
A
p|A log

(
p|A

q|A

)
+ P(A) log

(
P(A)

Q(A)

)
= P(A)D(P|A∥Q|A) + P(A) log

(
P(A)

Q(A)

)
.

Hence, by symmetry,

D(P∥Q) = P(A)D(P|A∥Q|A) + P(Ac)D(P|Ac∥Q|Ac) +D(P(A)∥Q(A)) ,

where D(P(A)∥Q(A)) denotes the divergence between Bernoulli distributions with parameters
P(A),Q(A). The last two terms being non-negative, the claim is proved.

Lemma 21. Let h ∈ (0, 1). Then, for any t > 0 such that n ⩾ 1.1B(d + t), with probability
larger than 1− e−t,

sup
u∈C(u∗,1/10B)

1

n

n∑
i=1

exp
(
− hB |⟨u,Xi⟩|

)
1
{
∥Xi∥ ⩽ 2

√
d
}
⩽

3.6

hB
.

Proof. For any u ∈ Sd−1, let

Zi(u) = exp
(
− hB |⟨u,Xi⟩|

)
1
{
∥Xi∥ ⩽ 2

√
d
}
.

To bound sup
u∈C(u∗,1/10B)

1
n

∑n
i=1 Zi(u), we apply the PAC-Bayes inequality (recalled in Lemma 12),

and for this, we bound all terms appearing in this inequality.
We apply this inequality with the collection of posteriors (ρu)u∈C(u∗,1/10B) and the prior π

defined as follows: For every u ∈ C(u∗, 1/10B), ρu is the uniform distribution over C(u, 1/10B)
and π is the uniform distribution over C(u∗,

√
2/5B), chosen such that, for any u ∈ C(u∗, 1/10B),

the support of ρu is included into the one of π.

Bounds on the Kullback-Leibler divergence. We prove in this paragraph that

D(ρu∥π) ⩽ 1.1 · d . (103)

We have directly:

D(ρu∥π) = log
(Vold−1(C(u

∗,
√
2/5B))

Vold−1(C(u, 1/10B))

)
,

where Vold−1 denote the Lebesgue measure on Sd−1. To compute these volumes, we let U denote
a random variable uniformly distributed on the sphere and u ∈ Sd−1. It is a standard fact that
⟨u, U⟩ has density given by

f(s) = cd
(
1− s2

) d−3
2 1(−1 ⩽ s ⩽ 1) ,

where cd is a normalizing constant. Therefore, for any ε ∈ (0, 1),

Vold−1(C(u, ε)) = P
(
⟨U, u⟩ >

√
1− ε2

)
= cd

∫ 1

√
1−ε2

(
1− s2

) d−3
2 ds =

∫ ε2

0

t(d−3)/2

√
1− t

dt .
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Hence,
2cdε

d−1

d− 1
⩽ Vold−1(C(u, ε)) ⩽

1√
1− ε2

2cdε
d−1

d− 1
.

Therefore,

D(ρu∥π) ⩽ (d− 1) log
(
2
√
2
)
+

1

2
log

(
1

1−
√
2/5B

)
.

As 1
2 log

(
1

1−
√
2/5B

)
⩽ log

(
2
√
2
)
, further bounding numerical constants gives the bound (90).

Bounds on the Laplace transform. In this paragraph, we prove that, for any λ ∈ [0, 1],

logE[exp(λZi(u))] ⩽
1

hB

(
λ+ λ2

)
. (104)

Indeed, the random variable Zi(u) ⩽ exp(−hB|⟨u,X⟩|) ⩽ 1 a.s., so, for any λ ∈ [0, 1],

E[exp(λZi(u))] = 1 + λE[Zi(u)] + λ2E[Zi(u)2] .

The moments of Zi(u) can then be bounded as follows:

E[Zi(u)] ⩽ E[exp(−hB|⟨u,X⟩|)] = 2

∫ +∞

0
exp

(
− hBx− x2

2

)
dx√
2π

⩽
1

hB
,

and, similarly, E[Zi(u)2] ⩽ 1√
2π

1
hB . The conclusion then follows by using log(1 + s) ⩽ s valid

for any s > −1.

Lower bound on the linear term. In this paragraph, we show that∫
C(u,1/10B)

Zi(u0)ρu(du0) ⩾ 0.85 · 1
{
∥Xi∥ ⩽ 2

√
d
}
exp

(
− hB|⟨u,Xi⟩|

)
. (105)

We have by Jensen’s inequality,∫
C(u,1/10B)

Zi(u0)ρu(du0) = 1
{
∥Xi∥ ⩽ 2

√
d
}∫

C(u,1/10B)
exp(−hB|⟨u0, Xi⟩|)ρu(du0)

⩾ 1
{
∥Xi∥ ⩽ 2

√
d
}
exp

(
− hB

∫
C(u,1/10B)

|⟨u0, Xi⟩|ρu(du0)
)

⩾ 1
{
∥Xi∥ ⩽ 2

√
d
}
exp

(
− hB

(∫
C(u,1/10B)

⟨u0, Xi⟩2ρu(du0)
)1/2)

.

This proves the result as, by [Mou22, Eq (42) and (43)] and Fact 6,∫
C(u,1/10B)

⟨u0, Xi⟩2ρu(du0) ⩽ ⟨u,Xi⟩2 +
2

100(d− 1)B
∥Xi∥2 .

Conclusion of the proof. By the PAC-Bayes inequality, we have thus, for any t > 0, with
probability at least 1− e−t, simultaneously for any u ∈ C(u∗, 1/10B) and any λ ∈ [0, 1],

0.85

n

n∑
i=1

1
{
∥Xi∥ ⩽ 2

√
d
}
exp

(
− hB|⟨u,Xi⟩|

)
⩽

1

hB

(
1 + λ

)
+

1.1 · d+ t

λn

⩽
1

hB

(
1 + λ

)
+

1

λB
.

We conclude by taking λ = 1.
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7 Linear separation: Proof of Theorem 2

In this section, we provide the proof of Theorem 2 on linear separation for small sample sizes. In
particular, Theorem 2 can be seen as a non-asymptotic analogue of (one direction in) the result
of [CS20].

Throughout this section, we assume that the design is isotropic Gaussian and that the model
is well-specified. Specifically, given a dimension d ⩾ 1, a parameter θ∗ ∈ Rd with norm β = ∥θ∗∥
and a sample size n ⩾ d, the dataset consists of n i.i.d. random pairs (X1, Y1), . . . , (Xn, Yn)
with Xi ∼ N(0, Id) and P(Yi = 1|Xi) = σ(⟨θ∗, Xi⟩). Note that if n ⩾ d, then almost surely
X1, . . . , Xn span Rd, hence (by the discussion in the introduction) the MLE exists if and only
if the dataset is not linearly separated. In addition, by rotation invariance of the standard
Gaussian distribution in Rd, the probability of linear separation (non-existence of the MLE)
only depends on θ∗ through its norm β.

We start by recalling the result of Candès and Sur [CS20] in the proportional asymptotic
regime. In this setting, we consider a sequence of parameters (dn, θ∗n)n⩾1 with dn/n→ γ ∈ (0, 1)
and βn = ∥θ∗n∥ → β ∈ R+.

Theorem 7 ([CS20], Theorem 2.2). In the setting described above, one has

P(MLE exists) −→
n→∞

{
1 if γ < h(β)

0 if γ > h(β) ,
(106)

where the function h : R+ → [0, 1] is defined as follows. For β ∈ R+, let (X ′, Y ′
β) be a random

pair in R × {−1, 1}, with X ′ ∼ N(0, 1) and P(Y ′
β = 1|X ′) = σ(βX ′), and let Vβ = Y ′

βX
′. In

addition, let Z ∼ N(0, 1) be independent of Vβ. Then,

h(β) = min
t∈R

E
[
(tVβ − Z)2+

]
. (107)

7.1 Proof of Theorem 2

The proof of Theorem 2 relies on the approximate kinematic formula from conic geometry
recalled hereafter. We first recall the definition of the statistical dimension of a cone C in Rn.
It is defined as δ(C) = E∥ΠCZ∥2 where ΠC is the Euclidean projection on C and Z ∼ N(0, In).

Lemma 22 (Approximate kinematic formula, Theorem 7.1 in [ALMT14]). Let L be a random
subspace of Rn drawn uniformly from all subspaces of dimension k and let C ⊂ Rn be a cone.
For all t > 0, if

n− k ⩽ δ(C)− t , (108)

then

P (C ∩ L ≠ {0}) ⩾ 1− 4 exp

(
− t2/8

min{δ(C), n− δ(C)}+ t

)
.

We can now proceed with the proof of Theorem 2. First, if n ⩽ d, a simple induction shows
that almost surely, the points X1, . . . , Xn are linearly independent in Rd. Hence, there exists
θ ∈ Rd such that for i = 1, . . . , n, one has ⟨θ,Xi⟩ = Yi and thus Yi⟨θ,Xi⟩ = Y 2

i = 1 > 0. Thus
infθ′∈Rd L̂n(θ

′) = 0, but L̂n > 0 on Rd and thus L̂n admits no global minimizer in Rd. We thus
assume from now on that n > d. Since n ⩽ Bd/23000, this implies that ∥θ∗∥ = B > e.

First, following [CS20], we express the probability that the MLE does not exist as the
probability that some random cone non-trivially intersects a random subspace of dimension
d− 1 in Rn. Let {(Xi, Yi)}1⩽i⩽n denote the dataset, where all the Xi’s are independently drawn
from N(0, Id). Using the rotational invariance of the standard Gaussian distribution, we can
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assume without loss of generality that for every i ∈ {1, . . . , n}, P(Yi = 1|Xi) = σ(BX1
i ) where

Xj
i denotes the j-th coordinate of Xi for every j ∈ {1, . . . , d}. Below we let Ui = X1

i and
Vi = YiUi for all i ∈ {1, . . . , n}. Let also V = (V1, . . . , Vn) ∈ Rn and Λ = RV + Rn+, which is a
random cone in Rn. The proof of Theorem 2 relies on the following observation.

Lemma 23. Let L be a random subspace drawn uniformly from all subspaces of dimension d−1
in Rn. Then

P(MLE does not exist) ⩾ P(Λ ∩ L ̸= {0}) .

The proof of this result is postponed to the end of the section and is a straightforward
adaptation of [CS20, Proposition 2] to the case where the model does not include an intercept.

In view of this characterization, we want to apply Lemma 22 to the cone Λ but we cannot do it
in a straightforward way, as this cone is random. We therefore show that the sufficient condition
(108) regarding the statistical dimension of Λ is satisfied with high probability. Hereafter we
denote by E = {Λ ∩ L ̸= {0}}, and for every t ⩾ 0, we define the event

At = {n− d+ 1 ⩽ δ(Λ)− t} . (109)

Our main task in this proof is to show that

P(Aαd) ⩾ 1− exp
(
−max

{
κ
√
d, κ2d/B2

})
− 2e−τd (110)

for some τ ∈ (0, 1/2) and α ∈ (1/2, 1). We now establish (110) with explicit constants. Condi-
tionning on V , one has δ(Λ) = n−EZ

[
dist(Z,Λ)2|V

]
, where EZ denotes the expectation with

respect to Z. Throughout the rest of this proof, we let

F (V ) = EZ

[
dist(Z,Λ)2|V

]
= EZ

[
min
λ∈R

n∑
i=1

(λVi − Zi)
2
+

∣∣∣V ]
.

This way, we will prove (110) by showing that F (V ) ≪ d with high probability. It is reasonable
to believe that this is true in the regime of interest where n ⩽ Bd/(C0κ). Indeed, we note that

E[F (V )] ⩽ min
λ∈R

E
[ n∑
i=1

(λVi − Zi)
2
+

]
= nh(B) ,

where h is the phase transition function (107) from [CS20]. In addition, one can show that
h(B) ≲ 1/B (we will not need this exact claim, hence we will not prove it, although it could be
deduced from the analysis below). Thus E[F (V )] ≲ n/B ≲ d.

Hereafter, we let ψ : s ∈ R 7→ E
[
(s− Z)2+

]
with Z ∼ N(0, 1) and start by bounding

F (V ) = E
[
min
λ∈R

n∑
i=1

(λVi − Zi)
2
+

∣∣∣V ]
⩽ min

λ∈R

n∑
i=1

E
[
(λVi − Zi)

2
+|Vi

]
= min

λ∈R

n∑
i=1

ψ(λVi) .

By Fact 4, for all λ ⩾ 0,

ψ(−λVi) ⩽ e−λ
2U2

i /2 + 1(YiUi ⩽ 0) + U2
i 1(YiUi ⩽ 0) . (111)

We thus define for all i ∈ {1, . . . , n} and λ ∈ R the variables

ζi,λ = e−λ
2U2

i /2 , εi = 1(YiUi ⩽ 0) , ψi = U2
i 1(YiUi ⩽ 0) , (112)
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so that we can further bound

F (V ) ⩽ min
λ>0

{ n∑
i=1

ζi,λ +
n∑
i=1

εi + λ2
n∑
i=1

ψi

}
. (113)

We now separately bound from above the three sums and then optimize the resulting bound
over λ. We use Bernstein’s inequality to bound the first two sums involving the ζi,λ and εi, but
bounding the sum of the ψi’s is a more subtle task, for which we resort to Latała’s bound on
the moments of sums of independent variables [Lat97] to control the moments of

∑n
i=1 ψi. Let

us start with the first sum. For every i ∈ {1, . . . , n}, every λ > 0 and k ∈ {1, 2},

E[ζki,λ] = E
[
exp

(
− kλ2U2

i

2

)]
=

∫
R

e−(kλ2+1)u2/2

√
2π

du =
1√

kλ2 + 1
⩽

1

λ
.

Since in addition ζi,λ ⩽ 1 almost surely, by Lemma 36 and the second and third points of
Lemma 35, for all t ⩾ 0, with probability larger than 1− e−t,

n∑
i=1

ζi,λ ⩽
n

λ
+

√
2nt

λ
+ 3t . (114)

Regarding the second sum, inequality (51) shows that for every i, E[εi] = E[exp(−B|Ui|)] ⩽ B−1.
Since ε2i = εi and εi ⩽ 1, the same argument as before shows that for all t ⩾ 0, it holds with
probability larger than 1− e−t that

n∑
i=1

εi ⩽
n

B
+

√
2nt

B
+ 3t . (115)

Finally, we turn to the control of the last sum, for which we use Latała’s bound, recalled hereafter.

Lemma 24 ([Lat97], Corollary 1). Let ξ, ξ1, . . . , ξn be i.i.d. nonnegative random variables. Then
for any p ⩾ 1, ∥∥∥∥ n∑

i=1

ξi

∥∥∥∥
p

⩽ 2e2 sup
{p
s

(n
p

)1/s
∥ξ∥s : 1 ∨

p

n
⩽ s ⩽ p

}
.

From now on, we let Sn = ψ1 + · · · + ψn and p ∈ [1, n]. By Markov’s inequality, P(Sn ⩽
e∥Sn∥p) ⩾ 1 − e−p, hence we want to bound ∥Sn∥p from above by some factor of d, with p as
large as possible. We are thus led to bound the individual Ls norms ∥ψi∥s and then optimize
over s ∈ [1, p].

Bound on individual moments. Regarding the bound on ∥ψi∥s, the result is obtained by
taking advantage of either the fact that U2

i is sub-exponential (by neglecting the indicator) or
by conditioning on Ui, which allows to use an exponential moment inequality. Let us formalize
this. Let U, Y, ψ denote random variables having the same distribution as Ui, Yi, ψi. On the one
hand, ψ ⩽ U2, so for all s ⩾ 1,

E[ψs] ⩽ E[|U |2s] = 2s√
2π

Γ
(
s+

1

2

)
.

Hence, using [OLBC10, Eq. (5.6.1)] and simplifying we obtain

∥ψ∥s = E[ψ2s]1/s ⩽ (3/e)s . (116)
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On the other hand, we use the fact that conditionally on U , {Y U ⩽ 0} happens with exponen-
tially small probability. More precisely, we write

E[ψs] = E
[
|U |2sE[1(Y U ⩽ 0)|U ]

]
= E

[
|U |2sσ(−B|U |)

]
⩽ E

[
|U |2s exp(−B|U |)

]
⩽

√
2

π

Γ(2s+ 1)

B2s+1
.

We then bound in a similar way Γ(2s+ 1)1/s and thus, combining the previous two bounds we
deduce that

∥ψ∥s ⩽
9

e2
min

{ s2

B2B1/s
, s
}
. (117)

Upper bound on the supremum. Using the control on the moments of the ψi’s (117), it
follows from Latała’s inequality (Lemma 24) that

∥Sn∥p ⩽
18

B2
sup

{
min

{
ps
( n

pB

)1/s
, B2p

(n
p

)1/s}
; 1 ⩽ s ⩽ p

}
. (118)

We now proceed with a bound on the supremum in the right-hand side by a function of p, n and
B. For this technical step, we define for every s > 0

G(s) = min
{
ps
( n

pB

)1/s
, B2p

(n
p

)1/s}
, G1(s) = ps

( n

pB

)1/s
, G2(s) = B2p

(n
p

)1/s
,

and then bound M(p) = sup1⩽s⩽pG(s) for every p ⩾ 1. We first note that G2 decreases on
(0,+∞) and that G1(s) ⩽ G2(s) for every s ⩽ B2. Let also

g(s) = log
(
s
( n

pB

)1/s)
=

1

s
log

( n

pB

)
+ log s .

Then
g′(s) =

1

s

(
1− 1

s
log

( n

pB

))
.

Now let s1 = log( n
pB ). We first deal with the case where s1 ⩾ min{p,B2}. In this configuration,

G1 decreases on [1, s1], hence G decreases on [1, p] and therefore M(p) = G1(1) = n/B. From
now on we assume that s1 < min{p,B2}.

If s1 ⩽ 1, g′(s) > 0 for every s > 1, hence G1 increases on [1,+∞). Since G2 de-
creases on (0,+∞), we deduce that the supremum is attained at either the value sc where
G1 and G2 coincide or at p, depending on whether p is smaller or larger than sc, hence
M(p) = min{G1(p), G(sc)}. In addition sc is solution to s = B2+1/s, therefore it (i) does
not depend on p and (ii) is slightly larger than B2 (more precisely, G1(B

2) ⩽ G2(B
2) but these

quantities only differ by a multiplicative constant). Consequently G(sc) = G2(sc) ⩽ G2(B
2).

Using the fact that p1/p = elog p/p ⩾ 1 (since p ⩾ 1), we deduce that in this configuration,

∥Sn∥p ⩽
18

B2
min

{
p2
( n
B

)1/p
, B2p

(n
p

)1/B2}
.

Now, if s1 > 1, G decreases on [1, s1] and increases on [s1,min{sc, p}], then decreases again
on [min{sc, p}, p] as it coincides with G2 on this last segment. Hence the only difference with
the previous case is that the supremum might be attained at s = 1.

Putting everything together, we conclude that

∥Sn∥p ⩽
18

B2
max

{ n
B
,min

{
p2
( n
B

)1/p
, B2p

(n
p

)1/B2}}
. (119)
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High-probability upper bound on
∑n

i=1 ψi. Using the bound on the moments of Sn estab-
lished above, we apply Markov’s inequality to derive a high probability bound for Sn. To that
end, we let p be as large as possible under the constraint that ∥Sn∥p does not exceed O(κ2d),
namely ∥Sn∥p ⩽ L0κ

2d/B2, where L0 only depends on C0. We prove that this is achieved by
taking

p = max{κ
√
d, κ2d/B2} . (120)

To do so, we first show that if p = κ
√
d, then

p2
( n
B

)1/p
⩽ κ2d exp

( 2

e
√
C0

)
. (121)

Using that n/B ⩽ d/(C0κ),

p2
( n
B

)1/p
⩽ κ2d

( d

C0κ

)1/(κ
√
d)

= κ2d exp

(
log

(
d/(C0κ)

)
κ
√
d

)
.

The function h : t 7→ log(t)/
√
t reaches its maximum at t = e2 and thus satisfies h(t) ⩽ 2/e for

all t > 0. Hence
log

(
d/(C0κ)

)
κ
√
d

⩽
2

eκ3/2
√
C0

, (122)

from which (121) follows, since κ ⩾ 1.
Similarly, if p = κ2d/B2, using that n/d ⩽ B/(C0κ), one has

B2p
(n
p

)1/B2

⩽ κ2d

(
1

C0

(B
κ

)3
)1/B2

.

Using the same argument as before, we find that(
1

C0

(B
κ

)3
)1/B2

⩽ exp

(
3

2eC
2/3
0

)
.

It is clear that exp(3/
(
2eC

2/3
0

)
) ⩾ exp(2/(e

√
C0)), hence, with p = max

{
κ
√
d, κ2d/B2

}
min

{
p2
( n
B

)1/p
, B2p

(n
p

)1/B2}
⩽ L0κ

2d , L0 = exp

(
3

2eC
2/3
0

)
.

Plugging this in (119) and using again the assumption n/B ⩽ d/(C0κ), we deduce that for
p = max{κ

√
d, κ2d/B2},

∥Sn∥p ⩽
18

B2
max

{ d

C0κ
, L0κ

2d
}
= 18L0

κ2d

B2
. (123)

High-probability bound on the statistical dimension. We now apply Markov’s inequality
using the moment bound (123). This yields

P
(
Sn ⩽

18eL0κ
2d

B2

)
⩾ 1− exp

(
−max

{
κ
√
d, κ2d/B2

})
.

Finally, we combine this with (114) and (115), showing that for every λ > 0 and every t ⩾ 0, it
holds with probability larger than 1− e−max{κ

√
d,κ2d/B2} − 2e−t that

n∑
i=1

ψ(−λVi) ⩽
n

B
+

√
2nt

B
+
n

λ
+

√
2nt

λ
+ 6t+

Lλ2κ2

B2
d , L = 18eL0 .
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We then set t = τd for some τ ∈ (0, 1). As n ⩽ Bd/(C0κ), the above rewrites

n∑
i=1

ψ(−λVi) ⩽
d

C0κ
+

√
2τ

C0κ
d+

Bd

C0κλ
+

√
2Bτ

C0κλ
d+ 6τd+

Lλ2κ2

B2
d .

Then, by the arithmetic mean–geometric mean inequality,

n∑
i=1

ψ(−λVi) ⩽
[

2

C0κ
+ 7τ +

2B

C0κλ
+
Lκ2λ2

B2

]
d . (124)

We now optimize the terms depending on λ and write, using the arithmetic mean–geometric
mean inequality

2B

C0κλ
+
Lκ2λ2

B2
=

2

3
· 3B

C0κλ
+

1

3
· 3Lκ

2λ2

B2
⩾

( 3B

C0κλ

)2/3(3Lκ2λ2
B2

)1/3
.

The last inequality is an equality if λ = λ∗, the value such that 3B
C0κλ

= 3Lκ2λ2

B2 . Simplifying the
constants yields

inf
λ>0

{ 2B

C0κλ
+
Lκ2λ2

B2

}
= 3 · (18e)1/3

exp
(

1

2eC
2/3
0

)
C

2/3
0

⩽
13.2

C
2/3
0

.

We finally plug this in (124) and obtain that

P
( n∑
i=1

ψ(−λ∗Vi) ⩽
[
7τ +

2

C0
+

13.2

C
2/3
0

]
d

)
⩾ 1− e−max{κ

√
d,κ2d/B2} − 2e−τd .

We choose C0 large enough so that 2C−1
0 ⩽ 0.8C

−2/3
0 . Then the above rewrites in particular

P
(
F (V ) ⩽

[
7τ + 14C

−2/3
0

]
d
)
⩾ 1− e−max{κ

√
d,κ2d/B2} − 2e−τd .

Given α ∈ (0, 1), for any τ ∈ (0, 1) and C0 ⩾ 1 such that(
7τ + 14C

−2/3
0

)
d ⩽ d− 1− αd (125)

it holds on the last event that F (V ) ⩽ d−1−αd. Equivalently, recalling that δ(Λ) = n−F (V ),
this rewrites

P(Aαd) = P
(
n− d+ 1 ⩽ δ(Λ)− αd

)
⩾ 1− e−max{κ

√
d,κ2d/B2} − 2e−τd , (126)

provided that α, τ and C0 satisfy (125). We have proved (110).

Conclusion of the proof. The final step of the proof consists in applying the kinematic
formula conditionally on the event where the statistical dimension of Λ is well-behaved. Let L
be a random subspace drawn uniformly from all subspaces of dimension d− 1 in Rn and let E
denote the event {Λ ∩ L ≠ {0}} (the event where linear separation occurs). By Lemma 22, on
the event Aαd,

P(E|V ) ⩾ 1− 4 exp
(
− (αd)2

8(min{δ(Λ), n− δ(Λ)}+ αd)

)
⩾ 1− 4e−α

2d/8 . (127)
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The last inequality stems from the fact that on Aαd, it also holds that min{F (V ), n−F (V )} ⩽
d− 1− αd . We thus showed that, given α ∈ (0, 1), for any τ and C0 satisfying (125),

P(Aαd) ⩾ P
(
F (V ) ⩽

[
7τ + 14C

−2/3
0

]
d
)
⩾ 1− e−max{κ

√
d,κ2d/B2} − 2e−τd .

To conclude the proof, we bound from below the probability of L intersecting Λ in a non
trivial way by following the final steps of the proof of Theorem 1 in [CS20]. Using (127), one
has

1(Aαd) ⩽ 1
(
P(E|V ) ⩾ 1− 4e−α

2d/8
)
= 1

(
P(E|V ) + 4e−α

2d/8 ⩾ 1
)

⩽ P(E|V ) + 4e−α
2d/8 .

Taking expectation with respect to V , this implies that

P(E) ⩾ P(Aαd)− 4e−α
2d/8 ⩾ 1− e−max{κ

√
d,κ2d/B2} − 2e−τd − 4e−α

2d/8 .

We will thus choose τ ⩾ α2/8 so that e−τd ⩽ e−α
2d/8, under the constraint (125). This constraint

rewrites
τ ⩽

1

7

(
1− 1

d
− α− 14

C
2/3
0

)
.

Since d ⩾ 50, if C0 ⩾ 22630, then

1− α

8
⩽

1

7

(
1− 1

d
− α− 14

C
2/3
0

)
.

To optimize the constants, we let α be such that α2 = 1 − α (denoted by α∗ and choose
τ = α2/8 = (1− α)/8. Hence the above rewrites

P(E) ⩾ 1− e−max{κ
√
d,κ2d/B2} − 6e−α

2
∗d/8 .

We finally bound α2
∗/8 = (1− α∗)/8 = (1− (

√
5− 1)/2)/8 ⩾ 1/21.

7.2 Remaining proofs and additional results

Proof of Lemma 23. By definition, there exists a separating hyperplane if there is some θ ∈
Rd \ {0} such that for all i ∈ {1, . . . , n},

Yi⟨θ,Xi⟩ ⩾ 0 . (128)

From now on, for 1 ⩽ j ⩽ d, we let Xj denote the n-dimensional vector (Xj
1 , . . . , X

j
n) whose

entries are all j-th coordinates of X1, . . . , Xn. For every i, the random vectors (Yi, X
1
i ) and

(X2
i , . . . , X

d
i ) are independent (and the latter has a symmetric distribution), hence the vectors

(YiX
1
i , YiX

2
i , . . . , YiX

d
i ) and (YiX

1
i , X

2
i , . . . , X

d
i ) have the same distribution. Therefore,

P
(
∃θ ∈ Rd \ {0}, ∀i, Yi⟨θ,Xi⟩ ⩾ 0

)
= P

(
∃θ ∈ Rd \ {0}, θ1V +

d∑
j=2

θjXj ∈ Rn+
)
. (129)

Now, let L = span{X2, . . . ,Xd}. Since X(2), . . . ,X(d) are i.i.d. random vectors with distribu-
tion N(0, In), the distribution of L is rotation-invariant and thus uniform over (d−1)-dimensional
subspaces of Rn. Also, L is independent from Λ = RV + Rn+, and if Λ ∩ L ̸= {0}, then there
exists θ1 ∈ R and (θ2, . . . , θd) ∈ Rd−1, as well as w ∈ Rn+ such that −θ1V + w =

∑d
j=2 θ

jXj ,
thus θ1V +

∑d
j=2 θ

jXj ∈ Rn+. Combining this fact with (129) concludes the proof.
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Fact 3. Let p ∈ (0, 1/2) and u∗ ∈ Sd−1 be such that P(Y ⟨u∗, X⟩ < 0) ⩽ p. For any t > 0, if
n ⩽ t/(2p), then with probability at least e−t the dataset (X1, Y1), . . . , (Xn, Yn) of i.i.d. copies of
(X,Y ) is linearly separated.

Proof. We have

P
(
∀i ⩽ n, Yi⟨u∗, Xi⟩ ⩾ 0

)
=

(
1− P(Y ⟨u∗, X⟩ < 0)

)n
⩾ (1− p)n = exp

(
n log(1− p)

)
.

By concavity, for all x ∈ [0, 1/2], log(1−x) ⩾ −2 log(2)x. Thus, since n ⩽ t/(2p) ⩽ t/(2 log(2)p),
one has

P
(
∀i ⩽ n, Yi⟨θ∗, Xi⟩ > 0

)
⩾ exp

(
− 2np

)
⩾ exp(−t) .

Fact 4. Let ψ(s) = E
[
(s− Z)2+

]
for every s ∈ R, with Z ∼ N(0, 1). Then

ψ(s) ⩽
e−s

2/2

2
1(s < 0) + (s2 + 1)1(s ⩾ 0) .

Proof. Using the symmetry of Z and the fact that (−x)+ = x−, we have, for every real s,

ψ(−s) = E(−s− Z)2+ = E(−(s+ Z))2+ = E(s+ Z)2− = E(s− Z)2− .

Also, observing that for all x ∈ R, x2 = x2+ + x2−, we have

ψ(−s) + ψ(s) = E(s− Z)2− + E(s− Z)2+ = E(s− Z)2 = s2 + 1 . (130)

We start with the case where s < 0. In this case, denoting by g the density of N(0, 1), one has

ψ(s) = E(s− Z)2+ = E
[
(s− Z)21{s− Z > 0}

]
=

∫ s

−∞
(s− z)2g(z)dz =

∫ +∞

0
z2g(s− z)dz

=

∫ +∞

0
z2

1√
2π

exp
(
− s2 − 2sz + z2

2

)
dz = e−s

2/2

∫ +∞

0
z2eszg(z)dz

= e−s
2/2 E

[
Z2esZ1{Z > 0}

]
.

Note that, since s < 0, esZ1{Z > 0} ⩽ 1{Z > 0}, which implies that

E
[
Z2e−sZ1{Z < 0}

]
⩽ E

[
Z21{Z < 0}

]
=

1

2
,

which proves the first part of the result. Regarding the case where s ⩾ 0, we deduce from (130)
that ψ(s) = s2 + 1− ψ(−s), and, from the previous point, that 0 ⩽ ψ(−s) ⩽ 1/2.

8 Proofs of the main results

This section gathers the results of Sections 5 and 6 to establish the upper bounds on the excess
risk of the MLE thanks to Lemma 3.

8.1 Preliminaries: convex localization and Hessian

We start with the proof of the localization lemma (Lemma 3).
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Proof of Lemma 3. Let r be arbitrary such that 2ν/c0 < r < r0, which exists since r0 > 2ν/c0
by assumption. For any θ ∈ Rd such that ∥θ − θ∗∥H = r, a Taylor expansion of order 2 shows
that

L̂n(θ)− L̂n(θ
∗) = ⟨∇L̂n(θ∗), θ − θ∗⟩+

∫ 1

0
(1− t)

〈
∇2L̂n

(
(1− t)θ∗ + tθ

)
(θ − θ∗), θ − θ∗

〉
dt

⩾ −∥∇L̂n(θ∗)∥H−1∥θ − θ∗∥H +
c0
2
∥θ − θ∗∥2H (131)

⩾ −νr + c0r
2/2 > 0 , (132)

where inequality (131) comes from the fact that ∇2L̂n((1 − t)θ∗ + tθ) ≽ c0H by assumption,
and (132) from the condition r > 2ν/c0. Now, for any θ′ ∈ Rd such that r′ = ∥θ′ − θ∗∥H ⩾ r,
the parameter θ = (1 − t)θ∗ + tθ′ with t = r/r′ ∈ (0, 1] satisfies ∥θ − θ∗∥H = r, hence by the
preceding and by convexity of L̂n one has

(1− t)L̂n(θ
∗) + tL̂n(θ

′) ⩾ L̂n
(
(1− t)θ∗ + tθ′

)
= L̂n(θ) > L̂n(θ

∗) ,

which simplifies to L̂n(θ
′) > L̂n(θ

∗). Hence infRd L̂n = infθ : ∥θ−θ∗∥H⩽r L̂n(θ), and the latter
infimum is attained by compactness and continuity of L̂n. Since in addition L̂n is strictly
convex on the set {θ ∈ Rd : ∥θ − θ∗∥H ⩽ r0} due to the second assumption, the function L̂n
admits a unique global minimizer θ̂n ∈ Rd, such that ∥θ̂n − θ∗∥H ⩽ r. Since this holds for every
r ∈ (2ν/c0, r0), we deduce that ∥θ̂n − θ∗∥H ⩽ 2ν/c0.

The excess risk bound (33) then follows from the fact that L(θ)− L(θ∗) ⩽ c1
2 ∥θ − θ∗∥2H for

any θ with ∥θ − θ∗∥H ⩽ r0, since ∇L(θ∗) = 0 and ∇2L ≼ c1H over this domain.
To prove the second point, let ε = L̂n(θ̃n)−L̂n(θ̂n) and r be such that max{4ν/c0, 2

√
ε/c0} <

r < r0. For any θ such that ∥θ−θ∗∥H = r, proceeding as before (and using that L̂n(θ̂n) ⩽ L̂n(θ
∗))

we get
L̂n(θ)− L̂n(θ̂n) ⩾ L̂n(θ)− L̂n(θ

∗) ⩾ −νr + c0r
2/2 ⩾ c0r

2/4 > ε ,

where the last two inequalities follow from the conditions on r. By the same convexity argument
as before, this implies that L̂n(θ) − L̂n(θ̂n) > ε for any θ such that ∥θ − θ∗∥H ⩾ r, hence
∥θ̃n−θ∗∥H < r. Letting r → max{4ν/c0, 2

√
ε/c0} and using that L(θ̃n)−L(θ∗) ⩽ c1

2 ∥θ̃n−θ
∗∥2H

concludes the proof.

We now turn to the structure of the Hessian ∇2L(θ∗) in the case of a Gaussian design, which
is given by (36). It then remains to justify the estimates (37) on the components c0(·), c1(·) of
the Hessian. Lemma 25 below shows that

2
√
2

3e4
√
π
min

(
1,

1

β3

)
⩽ c0(β) ⩽ 2

√
2

π
min

(
1,

1

β3

)
; (133)

1

2e4

√
2

π
min

(
1,

1

β

)
⩽ c1(β) ⩽

√
2min

(
1,

1

β

)
. (134)

Lemma 25. Let G ∼ N(0, 1). For any β > 0 and integer k ⩾ 0,√
2

π

2k+1

k + 1
min

(
1

4e4βk+1
,
σ′(2)

e2

)
⩽ E[σ′(βG)|G|k] ⩽

√
2

π
min

(
Γ

(
k + 1

2

)
,
k!

βk+1

)
.

Proof. We have

E[σ′(βG)|G|k] =
√

2

π

∫ +∞

0
xkσ′(βx) exp

(
− x2

2

)
dx .
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For the upper bound, we use that, for any x, σ′(x) ⩽ exp(−|x|) ⩽ 1 and exp(−x2/2) ⩽ 1 to get

E[σ′(βG)|G|k] ⩽
√

2

π
min

(∫ +∞

0
xk exp

(
− x2

2

)
dx,

∫ +∞

0
xk exp

(
− βx

)
dx

)
.

Computing the integrals yields the upper bound.
For the lower bound, as the function we integrate is nonnegative and σ′(x) ⩾ exp(−x)/4, we

have

E[σ′(βG)|G|k] ⩾
√

2

π

∫ 2

0
xkσ′(βx) exp

(
− x2

2

)
dx

⩾

√
2

π
max

(
1

4e2

∫ 2

0
xk exp(−βx)dx, σ′(2β)

∫ 2

0
xk exp

(
− x2

2

)
dx

)
=

√
2

π
max

(
1

4e2βk+1

∫ 2

0
xk exp(−x)dx, σ′(2β)

∫ 2

0
xk exp

(
− x2

2

)
dx

)
⩾

√
2

π

2k+1

k + 1
max

(
1

4e4βk+1
,
σ′(2β)

e2

)
.

To get the lower bound, we use the first bound when β > 1 and the second one when β ⩽ 1.

8.2 Proof of Theorem 1

By Proposition 5, since n ⩾ 4B(d log 5 + t), with probability larger than 1− 2e−t,

∥∥∇L̂n(θ∗)∥∥H−1 ⩽ 27

√
d+ t

n
,

Moreover, let

Θ =

{
θ ∈ Rd : ∥θ − θ∗∥H ⩽

1

100
√
B

}
,

Theorem 6 ensures that, as n ⩾ 320000B(d+t), then with probability at least 1−2e−t, simultane-
ously for all θ ∈ Θ, Ĥn(θ) ≽ 1

1000H. Therefore, by Lemma 3, as soon as n ⩾ (5400000)2B(d+ t),

27

√
d+ t

n
<

1

2000
· 1

100
√
B
,

so, with probability at least 1− 5e−t,

∥θ̂n − θ∗∥H ⩽ 54000

√
d+ t

n
.

By Lemmas 27 and 3, we also have on the same event

L(θ̂n)− L(θ∗) ⩽ 420 · (54)2 · 106d+ t

n
.

Regarding the necessity of the sample size condition, we combine Theorem 2 with Fact 3
which in the case of a well-specified model shows that the condition n ≳ Bt is also necessary.
Indeed, as the model is well-specified, P(Y ⟨θ∗, X⟩ < 0) = Eσ(−|⟨θ∗, X⟩|). In addition, for all
real t, σ(−|t|) ⩽ min{1/2, e−|t|}, hence

P(Y ⟨θ∗, X⟩ < 0) ⩽
1

max{2, ∥θ∗∥}
⩽

e

2B
.
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We use Fact 3 with p = e/(2B) to conclude that if n ⩽ Bt/e, then

P({MLE does not exist}) ⩾ exp(−t) . (135)

With these results at hand, one has that whenever

n ⩽
B

2

( d

C0
+
t

e

)
⩽ max

{Bd
C0

,
Bt

e

}
, (136)

either n ⩽ Bt/e or n ⩽ Bd/C0. The former is already dealt with by (135). The latter, by
Theorem 2 (with parameter κ = 1), implies that

P({MLE does not exist}) ⩾ 1− exp
(
−max

{√
d,

d

B2

})
− 6e−d/21 . (137)

As d ⩾ 53 and t ⩾ 1, one has 6e−d/21 ⩽ 1/2 and 1/2− e−
√
d ⩾ e−t. Hence, taking the minimum

of the two lower bounds (135) and (137) shows that P({MLE does not exist}) ⩾ exp(−t) and
concludes the proof of Theorem 1.

8.3 Proof of Theorem 3

By Proposition 6, we have, for any n ⩾ B(d+t), for any t > 0, with probability at least 1−3e−t,

∥∥∇L̂n(θ∗)∥∥H−1 ⩽ c′ logB

√
d+ t

n
.

Moreover, by Theorem 5, if
n ⩾ c1B(log(B)d+ t) ,

then, with probability 1− exp(−t),

Ĥn(θ) ≽ c2H, , ∀∥θ − θ∗∥H ⩽
c3

log(B)
√
B
.

By Lemma 3, it follows that, if

n ⩾ 4

(
c′

c2c3

)2

(logB)2B(d+ t) ,

with probability at least 1− 4e−t,

∥θ̂n − θ∗∥H ⩽
2c′(logB)2

c0

√
d+ t

n
. (138)

By Lemmas 28 and 3, on the same event, there exists a function c′ of c and K only such that

L(θ̂n)− L(θ∗) ⩽ c′(logB)4
d+ t

n
.

8.4 Proof of Theorem 4

By Proposition 7, if n ⩾ B(d+Bt), then with probability larger than 1− 3e−t,

∥∥∇L̂n(θ∗)∥∥H−1 ⩽ c′ log(B)

√
d+Bt

n
.
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Moreover, by Theorem 5, if
n ⩾ c1B(log(B)d+ t) ,

then, with probability 1− exp(−t),

Ĥn(θ) ≽ c2H for every θ such that ∥θ − θ∗∥H ⩽
c3

log(B)
√
B
.

By Lemma 3, it follows that, if

n ⩾ 4

(
c′

c2c3

)2

(logB)2B(d+Bt) , (139)

with probability at least 1− 4e−t,

∥θ̂n − θ∗∥H ⩽
2c′(logB)2

c0

√
d+Bt

n
. (140)

By Lemmas 28 and 3, on the same event, there exists a function c′ of c and K only such that

L(θ̂n)− L(θ∗) ⩽ c′(logB)4
d+Bt

n
.

Regarding the necessity of the sample size condition, the fact that the condition n ≳ Bd is
necessary comes from the well-specified case, which is a particular case of the current setting.
Regarding the necessity of the extra B factor in the sample size condition, consider the following
distribution of (X,Y ): X is a standard Gaussian vector and the conditional distribution of Y
given X is such that P(Y ⟨u∗, X⟩ < 0|X) is constant (see (141)). The first point of Lemma 26
shows that for this distribution, P(Y ⟨θ∗, X⟩ < 0) ⩽ 1/B2. It then follows from Fact 3 that if
n ⩽ B2t/2,

P(MLE exists) ⩽ e−t .

The conclusion follows from the same argument as in the proof of Theorem 3 in the previous
section, see (136) and after.

We now turn to the optimality of our bound on the excess risk (29). It is known from
asymptotic theory (see e.g. [vdV98, Example 5.25 p. 55]) that in the misspecified case,

√
nH(θ∗)1/2(θ̂n − θ∗)

(d)−−→
n→∞

N(0,Γ) , Γ = H(θ∗)−1/2GH(θ∗)−1/2 ,

where H(θ∗) = ∇2L(θ∗) is the population Hessian and G = E[∇ℓ(θ∗)∇ℓ(θ∗)⊤] is the the co-
variance of the gradient at θ∗. Hence, the rescaled excess risk 2n(L(θ̂n) − L(θ∗)) converges in
distribution to ∥ξ∥2 where ξ ∼ N(0,Γ). The argument showing the optimality of our result is
twofold. First, in the case where the model is well-specified, Γ = Id, so Tr(Γ) = d. Second, the
argument regarding the necessity of the deviation term builds upon the same conditional distri-
bution that explains the necessity of B2t in the sample size condition that we described above
(i.e. X ∼ N(0, Id) and Y |X is given by (141)). Indeed, by Lemma 27, Γ ≽ C−1

1 H−1/2GH−1/2,
with C1 = 2

√
2/π, so by the second point of Lemma 26, for this particular distribution, it holds

that
∥Γ∥op ⩾

B

8C1
⩾
B

13
.

In addition, by standard concentration arguments, one can find an absolute constant c1 such
that on one hand, the median of the distribution χ2(d) is at least c1d; and on the other hand,
if v ∈ Sd−1 denotes an eigenvector of Γ associated to its largest eigenvalue,

P(∥ξ∥2 ⩾ c1∥Γ∥opt) ⩾ P(⟨v, ξ⟩2 ⩾ c1∥Γ∥opt) ⩾ e−t .

This concludes the proof of Theorem 4.
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Worst misspecified case. In this paragraph we provide an example of conditional distribu-
tion of Y given X which accounts for the extra factors in the sample size and the risk bound
on the MLE. Such a distribution is obtained by taking X to be a standard Gaussian and Y |X
such that the event where Y differs from the sign of ⟨θ∗, X⟩ has a constant probability and is
independent of X.

Lemma 26. Let X ∼ N(0, Id), u∗ ∈ Sd−1 and p ∈ (0, e−2/2). Let Y be such that

P(Y ⟨u∗, X⟩ < 0|X) = p . (141)

Then

1. the signal strength B = max{e, ∥θ∗∥} is related to the probability of misclassification by

1

2B2
⩽ P(Y ⟨u∗, X⟩ < 0) ⩽

1

B2
.

2. The covariance of the gradient G = E[∇ℓ(θ∗, Z)∇ℓ(θ∗, Z)⊤] satisfies

∥H−1/2GH−1/2∥op ⩾
B

8
.

Proof. Recall that since the model is misspecified, θ∗ is defined as the unique minimizer of L(θ)
(uniqueness follows from the strict convexity of L). We first note that for any isometry Q such
that Qu∗ = u∗, it holds for all θ ∈ Rd that

L(Qθ) = L(θ) . (142)

This stems from the fact that the distribution of X is invariant under any isometry and the
distribution of Y given X is invariant under any isometry that preserves u∗. This holds in
particular at the point θ∗. Hence Qθ∗ = θ∗ and, letting Q = 2u∗u∗⊤ − Id, this shows that
θ∗ ∈ Ru∗. We show in addition that θ∗ ∈ R+u

∗, namely

θ∗ = ∥θ∗∥u∗ . (143)

This amounts to showing that L(−∥θ∗∥u∗) > L(∥θ∗∥u∗) which we do next. Let ϕ(t) = log(1+et)
denote the logistic loss and write

L(−∥θ∗∥u∗) = E[ϕ(Y ∥θ∗∥⟨u∗, X⟩)]
= (1− p)E[ϕ(∥θ∗∥|⟨u∗, X⟩|)] + pE[ϕ(−∥θ∗∥|⟨u∗, X⟩|)]
> pE[ϕ(∥θ∗∥|⟨u∗, X⟩|)] + (1− p)E[ϕ(−∥θ∗∥|⟨u∗, X⟩|)]
= E[ϕ(−Y ∥θ∗∥⟨u∗, X⟩)] = L(∥θ∗∥u∗) .

This proves (143).
It remains to show that B = ∥θ∗∥ ⩾ e and that B ≍ p−1/2. In view of (141), 1(Y ⟨θ∗, X⟩ < 0)

does not depend on X. Hence (59) rewrites

pE
[
|⟨u∗, X⟩|

]
= E

[
|⟨u∗, X⟩|σ(−|⟨θ∗, X⟩|)

]
.

In addition, since E|⟨u∗, X⟩| =
√
2/π, one has

p =

√
π

2
E
[
|⟨u∗, X⟩|σ(−|⟨θ∗, X⟩|)

]
. (144)
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On one hand, σ(−t) ⩾ e−t/2 for all t ⩾ 0. Using that ∥θ∗∥ ⩽ B, it follows from Lemma 29 that

E
[
|⟨u∗, X⟩|σ(−|⟨θ∗, X⟩|)

]
⩾

1

2
E
[
|⟨u∗, X⟩| exp(−B|⟨u∗, X⟩|)

]
⩾

1√
2πB2

. (145)

Hence, using (144) and since p ⩽ e−2/2 we deduce that

B ⩾
1√
2p

⩾ e .

The lower bound of the first point of the lemma is therefore a straightforward consequence
of (145) and (144) and we have

B = ∥θ∗∥ ⩾ e and p ⩾
1

2B2
. (146)

We now prove the upper bound of the first point, which is a consequence of the exponential
moment bound (51), since B = ∥θ∗∥ ⩾ e. Using that σ(−t) ⩽ e−t for all t ⩾ 0, we deduce

E
[
|⟨u∗, X⟩|σ(−|⟨θ∗, X⟩|)

]
⩽

√
2

π
· 1

B2
.

We plug this in (144) to get that p ⩽ 1/B2, which is the desired upper bound.
We now prove the second point. As σ(t) ⩾ 1/2 for every t ⩾ 0,

⟨Gu∗, u∗⟩ = E⟨u∗,∇ℓ(θ∗, Z)⟩2 = E
[
σ(−Y ⟨θ∗, X⟩)2⟨u∗, X⟩2

]
⩾

1

4
E
[
1(Y ⟨θ∗, X⟩ < 0)⟨u∗, X⟩2

]
.

The distribution of Y |X is designed so that E[1(Y ⟨θ∗, X⟩ < 0)|X] is actually not a function of
X, but constant and equal to p. More precisely,

E
[
1(Y ⟨θ∗, X⟩ < 0)⟨u∗, X⟩2

]
= E

[
E
[
1(Y ⟨θ∗, X⟩ < 0)⟨u∗, X⟩2|X

]]
= E

[
⟨u∗, X⟩2E

[
1(Y ⟨θ∗, X⟩ < 0)|X

]]
= pE⟨u∗, X⟩2 = p .

Therefore
⟨Gu∗, u∗⟩ ⩾ p

4
⩾

1

8B2
.

Finally, since H−1/2u∗ = B3/2u∗, it follows that ⟨H−1/2GH−1/2u∗, u∗⟩ ⩾ B/8.

8.5 Technical tools

In the previous proofs, we used the following lemmas linking the Hessians ∇2L(θ) = H(θ) =
E[σ′(⟨θ,X⟩)XX⊤] to H to conclude the proof.

Lemma 27. Let θ ∈ Rd \ {0} denote a vector such that ∥θ − θ∗∥H ⩽ 1/10
√
B, let u = θ/∥θ∥

and let X denote a standard Gaussian vector. Then,

1

500
H ≼ H(θ) ≼ 420H .

Proof. We write that, for any v ∈ Sd−1

⟨H−1/2
θ H(θ)H

−1/2
θ v, v⟩ = B3⟨u, v⟩2E[σ′(⟨θ,X⟩)⟨u,X⟩2] +B(1− ⟨u, v⟩2)E[σ′(⟨θ,X⟩)] .
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We start with the upper bound. By Lemma 25,

E[σ′(⟨θ,X⟩)|⟨u,X⟩|k] ⩽
√

2

π
min

(
Γ

(
k + 1

2

)
,
Γ(k + 1)

∥θ∥k+1

)
.

Then, if B = e, we use the first bound to get

⟨H−1/2
θ H(θ)H

−1/2
θ v, v⟩ ⩽

√
2e3 .

This proves that H(θ) ≼
√
2e3Hθ. As Hθ ≼ e−1Id ≼ e2H, this proves the result when B = e.

If B > e, we have by Lemma 17, ∥θ∥ ⩾ 0.9 ·B, so the second bound on the moments gives

⟨H−1/2
θ H(θ)H

−1/2
θ v, v⟩ ⩽

√
2

π

2

0.93
.

This proves that H(θ) ≼ 2.2 ·Hθ and this proves the result in the case B > e since by Lemma 19
we also have Hθ ≼ 1.3 ·H.

We now turn to the lower bound. By Lemma 25,

E[σ′(⟨θ,X⟩)|⟨u,X⟩|k] ⩾
√

2

π

2k+1

k + 1
min

(
1

4e4∥θ∥k+1
,
σ′(2)

e2

)
.

Then, if B = e, we use the second bound to get

⟨H−1/2
θ H(θ)H

−1/2
θ v, v⟩ ⩾ 0.02 .

This proves that H(θ) ≽ c2Hθ and as Hθ ≽ e−3Id ≽ e−2H, this proves the result when B = e.
If B > e, we have by Lemma 17, ∥θ∥ ⩾ 0.9 ·B, so the first bound on the moments gives

⟨H−1/2
θ H(θ)H

−1/2
θ v, v⟩ ⩾ 0.0027 .

This proves the result in the case B > e since by Lemma 19 we also have Hθ ≽ 0.76 ·H.

Lemma 28. Let θ ∈ Rd\{0} be such that ∥θ−θ∗∥H ⩽ 1/10
√
B and let u = θ/∥θ∥. Suppose that

X satisfies Assumptions 1 with parameter K > 0 and 2 with parameters η = 1/B and c ⩾ 1.
Then, there exists c′ depending on c and K such that

1

c′
H ≼ H(θ) ≼ c′H .

Proof. We start with the proof of the upper bound. Let v ∈ Sd−1 and let w ∈ Sd−1 denote a
vector such that ⟨u,w⟩ = 0 and v − ⟨u, v⟩u =

√
1− ⟨u, v⟩2w. As σ′(x) ⩽ exp(−|x|), we have

⟨H−1/2
θ H(θ)H

−1/2
θ v, v⟩ = B3⟨u, v⟩2E[exp(−|⟨θ,X⟩|)⟨u,X⟩2]

+B(1− ⟨u, v⟩2)E[exp(−|⟨θ,X⟩|)⟨w,X⟩2] .

If B = e, it follows from σ′(x) ⩽ 1 that H(θ) ≼ e3Hθ and thus H(θ) ≼ e5H since Hθ ≼ e2H in
this case.

If B > e, we have by Lemma 17, ∥θ∥ ⩾ (1− r)B. Thus, by Lemma 6, it follows that

⟨H−1/2
θ H(θ)H

−1/2
θ v, v⟩ ⩽ 3c

1− r
(K log((1 + r)B))2 .
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This proves that H(θ) ≼ 3c
1−r (K log((1 + r)B))2Hθ and this proves the result in the case B > e

since by Lemma 19 we also have Hθ ≼ (1 + 2.35r)H.
We now turn to the lower bound. Let v ∈ Sd−1, we have

⟨H(θ)v, v⟩ = E[σ′(⟨θ,X⟩)⟨v,X⟩2] .

The function σ′(x) = exp(x)/(1 + exp(x))2 is even, non negative, non increasing on [0,+∞).
Therefore, for any m,M > 0,

⟨H(θ)v, v⟩ ⩾ σ′(m(1 + r)B)M2P
(
|⟨u,X⟩| ⩽ m, |⟨v,X⟩| ⩾M

)
, (147)

where we also used that, as ∥θ − θ∗∥ ⩽ r/
√
B, ∥θ∥ ⩽ (1 + r)B by Lemma 17.

If ∥θ∗∥ ⩽ e, B = e, so Proposition 2 shows that Assumptions 2 holds with c = e and
Assumption 3 is satisfied with constant max{2eK log(2K), 2K4} = 2K4. Therefore,

P
(∣∣⟨u,X⟩

∣∣ ⩽ 2K4

B
;
∣∣⟨v,X⟩

∣∣ ⩾ max {1/B, ∥u∗ − v∥}
2K4

)
⩾

1

2K4B
.

Hence, choosing m = 2K4/B and M = max {1/B, ∥u∗ − v∥} /2K4 in (147), we get that

⟨H(θ)v, v⟩ ⩾ σ′((1 + r)2K4)

8K12

1

B
max

{
1

B2
, ∥u∗ − v∥2

}
⩾
σ′((1 + r)2K4)

16K12
⟨Hv, v⟩ .

When B > e, the third point of Lemma 17 implies that for every θ ∈ Θ,

∥u− u∗∥ ⩽

√
2

[K log(c(c+ 1)B)− 1]

r

B
⩽

2r

KB log(c(c+ 1)B)
.

By Lemma 11, this implies that for all θ ∈ Θ and v ∈ Sd−1, one has for all t ⩾ 1/B

P
(∣∣⟨u,X⟩

∣∣ ⩽ c+ 1

B
;
∣∣⟨v,X⟩

∣∣ ⩾ max {1/B, ∥u∗ − v∥}
c+ 1

)
⩾

1

(c+ 1)B
.

Hence, choosing m = (c+ 1)/B, M = max(1/B, ∥u∗ − v∥)/(c+ 1) in (65), we get that

⟨H(θ)v, v⟩ ⩾ σ′((1 + r)(1 + c))

(1 + c)3
1

B
max

{
1

B2
, ∥u∗ − v∥2

}
⩾
σ′((1 + r)(1 + c))

2(1 + c)3
⟨Hv, v⟩ .

Lemma 29. Let N ∼ N(0, 1) and B ⩾ e. Then

E
[
|N | exp(−B|N |)] ⩾ 1√

2πB2
.

Proof. Let g(t) = e−t
2/2/

√
2π denote the standard real Gaussian density. First, by symmetry,

E
[
|N | exp(−B|N |)

]
=

√
2

π

∫ +∞

0
te−Bte−t

2/2dt . (148)

Then we proceed with an expansion of the integral.∫ +∞

0
te−Bte−t

2/2dt = eB
2/2

∫ +∞

0
te−

(t+B)2

2 dt = eB
2/2

∫ +∞

B
(x−B)e−x

2/2dx

= eB
2/2

(∫ +∞

B
xe−x

2/2dx−B

∫ +∞

B
e−x

2/2dx
)

= 1−BeB
2/2

∫ +∞

B
e−t

2/2dt .
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Now we use twice the formula∫ +∞

x

1

tk
e−t

2/2dt =
e−x

2/2

xk+1
− (k + 1)

∫ +∞

x

1

tk+2
e−t

2/2dt ,

which holds for all x > 0 and all k ⩾ 0 by a simple integration by parts. This yields

eB
2/2

∫ +∞

B
e−t

2/2dt =
1

B
− 1

B3
+

3

B5
− 15

∫ +∞

B

1

t6
e−t

2/2dt ⩽
1

B
− 1

B3
+

3

B5
.

Then ∫ +∞

0
te−Btg(t)dt = 1−BeB

2/2

∫ +∞

B
e−t

2/2dt ⩾
1

B2
− 3

B4
=

1

B2

(
1− 3

B2

)
.

Combining with (148) proves the claim. Finally, as B ⩾ e, 3/B2 ⩽ 3/e2 ⩽ 1/2 and the result
follows.

9 Proofs of results from Section 3

9.1 Proof of Proposition 2 (regularity at constant scales)

First, note that Assumption 2 holds with c = η−1 < c(K, η), since P(|⟨u∗, X⟩| ⩽ t) ⩽ 1 ⩽ η−1 · t
for any t ⩾ η. We now show that Assumption 3 also holds for c = c(K, η). We start by writing,
for any v ∈ Sd−1 such that ⟨u∗, v⟩ ⩾ 0 and s, t > 0,

P
(
|⟨u∗, X⟩| ⩽ s, |⟨v,X⟩| ⩾ t

)
⩾ P(|⟨v,X⟩| ⩾ t)− P(|⟨u∗, X⟩| > s) .

In order to lower bound the first term above, we apply the Paley-Zygmund inequality (162) to
Z = ⟨v,X⟩2 (with E[Z] = 1), which gives

P
(
|⟨v,X⟩| ⩾ 1√

2

)
= P

(
⟨v,X⟩2 ⩾ 1

2
E[⟨v,X⟩2]

)
⩾

1

4

E[⟨v,X⟩2]2

E[⟨v,X⟩4]
⩾

1

4K4
,

where the last inequality follows from the fact that ∥⟨v,X⟩∥ψ1 ⩽ K, which by Definition 5
implies that ∥⟨v,X⟩∥4 ⩽ 4K/(2e) ⩽ K. In addition, since ∥⟨u∗, X⟩∥ψ1 ⩽ K, Lemma 35 implies
that

P
(
|⟨u∗, X⟩| > 2K log(2K)

)
⩽ e−2×2 log(2K) =

1

16K4
. (149)

Combining the previous inequalities and using that ∥u∗ − v∥ ⩽
√
2 and η ⩽ e−1, we obtain that

P
(
|⟨u∗, X⟩| ⩽ 2K log(2K)

η
· η, |⟨v,X⟩| ⩾ max{∥u∗ − v∥, η}

2

)
⩾

1

4K4
− 1

16K4

=
3

16K4
⩾

3eη

16K4
⩾

η

2K4
,

which shows that Assumption 3 holds with c = cK,η given by (149).

9.2 Proof of Proposition 3 (regularity of log-concave distributions)

In this section, we show that centered isotropic log-concave distributions satisfy Assumptions 1, 2
and 3, in every direction u∗ ∈ Sd−1 and at any scale η ∈ (0, e−1).

First, it is a standard fact that log-concave measures are sub-exponential.
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Lemma 30. For every isotropic log-concave random vector X in Rd, one has ∥⟨v,X⟩∥ψ1 ⩽
√
2e

for every v ∈ Sd−1.

Proof. Corollary 5.7 in [GNT14] with q = 2 shows that for all v ∈ Sd−1 and p ⩾ 1,

∥⟨v,X⟩∥p ⩽
(p!)1/p

21/2
∥⟨v,X⟩∥2 ⩽

p√
2
.

Hence ⟨v,X⟩ is sub-exponential with ∥⟨v,X⟩∥ψ1 ⩽
√
2e.

Lemma 31. Let X be an isotropic random vector in Rd with log-concave distribution. Then for
all u ∈ Sd−1 and all t > 0,

P
(
|⟨u,X⟩| ⩽ t

)
⩽ 2t . (150)

In other words, X satisfies Assumption 2 with constant c1 = 2, for all u ∈ Sd−1 and η > 0.

Proof. The random variable ⟨u,X⟩ is log-concave since the random vector X is, and additionally
E[⟨u,X⟩] = 0 and E[⟨u,X⟩2] = 1. It then follows from [BL19, Proposition B.2] that ⟨u,X⟩
admits a density fu that is upper-bounded by 1 on R, which proves (150).

We now show that the two-dimensional margin condition is satisfied at all scales and in
every direction. Note that the case of constant scales follows from the sub-exponential tails,
by Proposition 2. For small scales, the proof uses the fact that centered and isotropic low-
dimensional log-concave densities are lower-bounded around the origin.

Fact 5. There exist absolute constants ε, c2 ⩽ 1 such that for any isotropic and centered density
f on R2 and z ∈ [−ε, ε]2, one has f(z) ⩾ c2.

Another way of saying this is that, with the same notation, f is bounded from below by a
constant factor of the uniform density on [−ε, ε]2.

Lemma 32. There exist universal constants C ⩾ 1 and ε ∈ (0, 1) such that for any centered and
isotropic log-concave random vector X in Rd, for all η ∈ (0, ε] and u ∈ Sd−1, for all v ∈ Sd−1,

P
(
|⟨u,X⟩| ⩽ η ; |⟨v,X⟩| ⩾ 1

C
max

{
η, ∥u− v∥

})
⩾
η

C
. (151)

Proof. Let u, v ∈ Sd−1 be such that ⟨u, v⟩ ⩾ 0. Using Remark 1, we work with the quantity√
1− ⟨u, v⟩2 rather than ∥u − v∥. Based on Fact 5, we start by reducing the problem at hand

to uniform distributions. We start by writing ⟨u, v⟩ = cosϕ for some ϕ ∈ [0, π/2], so that√
1− ⟨u, v⟩2 = sinϕ and we define (if v ̸= u)

w =
v − ⟨u, v⟩u√
1− ⟨u, v⟩2

=
v − cos(ϕ)u

sinϕ
∈ Sd−1 .

This way, ⟨u,w⟩ = 0 and in particular, (⟨u,X⟩, ⟨w,X⟩) is a centered and isotropic log-concave
random vector in R2, whose density will be denoted by f0 throughout the rest of this proof. By
Fact 5, it holds that

f0(s, t) ⩾ c21(|s| ⩽ ε, |t| ⩽ ε) ,

for some absolute constant ε and all (s, t) ∈ R2. In particular, letting U,W be i.i.d. uniform
variables on [−ε, ε], with joint density

g0(s, t) =
1

4ε2
1(|s| ⩽ ε, |t| ⩽ ε) ,
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the previous inequality can be rewritten as

f0 ⩾ 4ε2c2g0 . (152)

Now, let f denote the density of (⟨u,X⟩, ⟨v,X⟩) and let η ∈ (0, ε]. As we seek to establish (151),
our goal is to bound from below (the integral of) f as∫

|s|⩽η

∫
|t|⩾max{η,sinϕ}

C

f(s, t)dsdt ⩾
η

C
, (153)

for some C ⩾ 1 that may depend on c2 and ε. As ⟨v,X⟩ = cos(ϕ)⟨u,X⟩+ sin(ϕ)⟨w,X⟩, we let
V = cos(ϕ)U + sin(ϕ)W and denote by g the joint density of (U, V ). Then, since f is obtained
from f0 by the same change of variables as g is obtained from g0, it is enough to prove that g
satisfies (153). We now do so.

First, if u is close to v (in a sense measured by the scale η, i.e. that sinϕ < η), the two-
dimensional condition essentially reduces to a one-dimensional property. More precisely, if η >
sinϕ, then for every c ⩾ 1, one has

P
(
|U | ⩽ η ; |V | ⩾ η

c

)
⩾ P(|U | ⩽ η)− P

(
|V | < η

c

)
On one hand, as η ⩽ ε, P(|U | ⩽ η) = η/ε. On the other hand, regarding the second term, using
the fact that U is independent of W and symmetric, we find by conditioning on W that

P
(
|V | ⩽ η

c

∣∣∣W)
= P

(∣∣U cosϕ−W sinϕ
∣∣ ⩽ η

c

∣∣∣W)
= P

(∣∣∣U −W
sinϕ

cosϕ

∣∣∣ ⩽ η

c cosϕ

∣∣∣W)
⩽ P

(∣∣∣U −W
sinϕ

cosϕ

∣∣∣ ⩽ 1.1
η

c

∣∣∣W)
, (154)

where the last line uses that sinϕ ⩽ η ⩽ e−1 hence cosϕ ⩾
√
1− e−2, and a bound on the

numerical constant. Then, recalling that U ∼ U([−ε, ε]) it holds for all t ∈ R and r ⩾ 0 that

P(|U − t| ⩽ r) ⩽
r

ε
.

Thus
P
(∣∣∣U −W

sinϕ

cosϕ

∣∣∣ ⩽ 1.1
η

c

∣∣∣W)
⩽ 1.1

η

cε
.

It then follows that as soon as c ⩾ 2.2,

P
(
|U | ⩽ η ; |V | ⩾ η

c

)
⩾
η

ε
− 1.1

η

cε
⩾

η

2ε
. (155)

We now turn our attention to the other regime, where η ⩽ sinϕ. We now rely on the following.
Recalling that W ∼ U([−ε, ε]) it holds for all t ∈ R that

P
(
|W − t| ⩾ ε

2

)
⩾

1

2
.

This implies (since W is independent of U and symmetric) that as soon as c ⩾ 2/ε,

P
(
|V | ⩾ sinϕ

c

∣∣∣U)
= P

(∣∣W sinϕ− U cosϕ
∣∣ ⩾ sinϕ

c

∣∣∣U)
= P

(∣∣∣W − U
cosϕ

sinϕ

∣∣∣ ⩾ 1

c

∣∣∣U)
⩾ P

(∣∣∣W − U
cosϕ

sinϕ

∣∣∣ ⩾ ε

2

∣∣∣U)
⩾

1

2
.
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It follows that

P
(
|U | ⩽ η ; |V | ⩾ sinϕ

c

)
= E

[
1
(
|U | ⩽ η

)
P
(
|V | ⩾ sinϕ

c

∣∣∣U)]
⩾

1

2
P
(
|U | ⩽ η

)
=

η

2ε
. (156)

Combining (155) and (156) shows that

P
(
|U | ⩽ η ; |V | ⩾ max{η, sinϕ}

c

)
⩾

η

2ε
, (157)

meaning that g satisfies (153). Using (152) and applying the same change of variables to g0 and
f0, we conclude that

P
(
|⟨u,X⟩| ⩽ η ; |⟨v,X⟩| ⩾ ε

2
max

{
η,
√
1− ⟨u, v⟩2

})
⩾ 2εc2η .

9.3 Proof of Proposition 4 (regularity for i.i.d. coordinates)

This section contains the proofs of the results from Section 3.3. Specifically, we show that random
vectors X with i.i.d. sub-exponential coordinates (Assumption 4) satisfy Assumptions 1, 2 and 3
down to a scale η ≍ 1/

√
d in the “diffuse” direction u∗ = (1/

√
d, . . . , 1/

√
d).

Assumption 1

We first recall the standard fact that a random vector with independent sub-exponential coor-
dinates is itself sub-exponential.

Lemma 33. If X1, . . . , Xd are independent centered real random variables with ∥Xj∥ψ1 ⩽ K for
1 ⩽ j ⩽ d, for every v = (vj)1⩽j⩽d ∈ Sd−1, letting X = (Xj)1⩽j⩽d one has ∥⟨v,X⟩∥ψ1 ⩽ 4K.

Proof. By the sixth point of Lemma 35, Xj is (K2/2,K/2)-sub-gamma for every j. By in-
dependence and the third point of the same lemma, ⟨v,X⟩ =

∑d
j=1 vjXj is sub-gamma, with

parameters K2/2·
∑d

j=1 v
2
j = K2/2 and K/2·max1⩽j⩽d |vj | ⩽ K/2. Since the same also holds for

−⟨v,X⟩ = ⟨−v,X⟩, the fifth point of Lemma 35 implies that ∥⟨v,X⟩∥ψ1 ⩽ 2 3
√
2emax(K/

√
2, 2 ·

K/2) = 2 3
√
2eK ⩽ 4K.

Assumption 2: proof of Lemma 1

The second condition on one-dimensional marginals holds because, if u ∈ Sd−1 is sufficiently
“diffuse”, then the distribution of ⟨u,X⟩ is close to that of a standard Gaussian variable. This
fact follows from the Berry-Esseen theorem (see, e.g., [Fel68]); we will use the version with small
numerical constants from [She10, Tyu12].

Lemma 34 ([Tyu12], Theorem 1). Let Z1, . . . , Zd be independent centered random variables
with

∑d
j=1 E[Z2

j ] = 1. Let Z =
∑d

j=1 Zj and G ∼ N(0, 1). Then, for every t ∈ R, one has

∣∣P(Z ⩽ t)− P(G ⩽ t)
∣∣ ⩽ 0.56 ·

d∑
j=1

E
[
|Zj |3

]
. (158)

We now proceed with the proof of Lemma 1, which states that Assumption 2 holds.
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Proof of Lemma 1. First, applying Lemma 34 to −Z1, . . . ,−Zd and −s gives a similar bound
as (158) for P(Z < s). After taking differences we deduce that, under the assumptions of
Lemma 34, for every s, t ∈ R with s ⩽ t, one has

∣∣P(s ⩽ Z ⩽ t)− P(s ⩽ G ⩽ t)
∣∣ ⩽ 1.12 ·

d∑
j=1

E
[
|Zj |3

]
. (159)

We apply this inequality to t ∈ [K3∥u∥33, 1], s = −t and Zj = ujXj , so that E[Zj ] = 0,∑d
j=1 E[Z2

j ] =
∑d

j=1 u
2
j = 1, and E[|Zj |3] = |uj |3∥Xj∥33 ⩽ |uj |3(3K/2e)3. As Z = ⟨u,X⟩,

∣∣P(|⟨u,X⟩| ⩽ t)− P(|G| ⩽ t)
∣∣ ⩽ 1.12 ·

d∑
j=1

(3K
2e

)3
|uj |3 ⩽

K3

5
∥u∥33 , (160)

where we used that 1.12× ( 3
2e)

3 ⩽ 1/5. Now, since the density of G is between e−1/2/
√
2π and

1/
√
2π on [−1, 1], one has

2t√
2πe

⩽ P(|G| ⩽ t) ⩽
2t√
2π

.

Plugging these inequalities into (160) and using that K3∥u∥33 ⩽ t gives

( 2√
2πe

− 1

5

)
t ⩽ P(|⟨u,X⟩| ⩽ t) ⩽

(√ 2

π
+

1

5

)
t ,

which implies (30) by further bounding the numerical constants.

Assumption 3: proof of Lemma 2

We now establish the two-dimensional margin condition.

Proof of Lemma 2. As discussed in Section 3.3, the idea of the proof is to perturb the vector X
by a random permutation of its coordinates, and use the fact that such transformations do not
affect the distribution of X nor the value of ⟨u∗, X⟩, but induce some variability in the quantity
⟨v,X⟩.

Perturbation by random permutations. Let σ be a permutation of {1, . . . , d}. For x =
(x1, . . . , xd) ∈ Rd, we let xσ = (xσ(1), . . . , xσ(d)) denote the vector obtained by permuting the
coordinates of x by σ. First, since X1, . . . , Xd are i.i.d., the vector Xσ has the same distribution
as X. In addition, one has

⟨u∗, Xσ⟩ = 1√
d

d∑
i=1

Xσ(i) =
1√
d

d∑
i=1

Xi = ⟨u∗, X⟩ .

It follows that, for any v ∈ Sd−1 and s > 0,

P
(
|⟨u∗, X⟩| ⩽ η, |⟨v,X⟩| ⩾ s

)
= P

(
|⟨u∗, X⟩| ⩽ η, |⟨v,Xσ⟩| ⩾ s

)
.

From now on, we let σ denote a random permutation, drawn uniformly from the set Sd of all
permutations of {1, . . . , d} and independent of X. We let Pσ and Eσ respectively denote the
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probability and expectation with respect to σ, conditionally on X. From the equality above
applied to any σ′ ∈ Sd, one has

P
(
|⟨u∗, X⟩| ⩽ η, |⟨v,X⟩| ⩾ s

)
=

1

d!

∑
σ′∈Sd

P
(
|⟨u∗, X⟩| ⩽ η, |⟨v,Xσ′⟩| ⩾ s

)
= E

[
P
(
|⟨u∗, X⟩| ⩽ η, |⟨v,Xσ⟩| ⩾ s |σ

)]
= E

[
Pσ

(
|⟨u∗, X⟩| ⩽ η, |⟨v,Xσ⟩| ⩾ s

)]
= E

[
1{|⟨u∗, X⟩| ⩽ η}Pσ

(
|⟨v,Xσ⟩| ⩾ s

)]
. (161)

Hence, in order to lower bound the left-hand side of (161), it suffices to lower bound Pσ
(
|⟨v,Xσ⟩| ⩾

s
)

when X satisfies |⟨u∗, X⟩| ⩽ η (we will actually require additional symmetric conditions on
X, but we omit them here for simplicity). In other words, we need to show that for such values
of X, the fraction of permutations σ ∈ Sd such that |⟨v,Xσ⟩| ⩾ s is lower-bounded.

We will achieve this by resorting to the Paley-Zygmund inequality (e.g., [Tal21, eq. (6.15)
p. 181]), which asserts that for any non-negative random variable Z with 0 < E[Z2] < +∞, one
has

P
(
Z ⩾

1

2
E[Z]

)
⩾

1

4

E[Z]2

E[Z2]
. (162)

Applying this inequality to the random variable Z = ⟨v,Xσ⟩2 conditionally on X gives

Pσ
(
|⟨v,Xσ⟩| ⩾ 1√

2
Eσ[⟨v,Xσ⟩2]1/2

)
⩾

1

4

Eσ[⟨v,Xσ⟩2]2

Eσ[⟨v,Xσ⟩4]
. (163)

We are therefore led to bound Eσ[⟨v,Xσ⟩2]1/2 from below and Eσ[⟨v,Xσ⟩4]1/4 from above, ideally
to conclude that these two quantities are both of the order of the value from Lemma 2. The
advantage of this approach is that it reduces to evaluating expectations of polynomials of the
variables Xσ(i), 1 ⩽ i ⩽ d under the uniform distribution on Sd, which can be computed exactly.

Lower bound on the second moment. Denote for p ∈ N,

ϕ = ϕ(X) = ⟨u∗, X⟩ = 1√
d

d∑
i=1

Xi , µp = µp(X) =
1

d

d∑
i=1

Xp
i .

In particular, one has |µp| ⩽ µ
p/4
4 for 1 ⩽ p ⩽ 4. In the following, we assume that X satisfies

µ2(X) ⩾ 1/2 and |ϕ(X)| ⩽ η ⩽ 1.
Now, for any v ∈ Sd−1,

Eσ
[
⟨v,Xσ⟩2

]
= Eσ

[( d∑
i=1

viXσ(i)

)2]
=

∑
1⩽i,j⩽d

vivjEσ[Xσ(i)Xσ(j)] .

For i = j, since σ(i) is uniformly distributed on {1, . . . , d} one has

Eσ[Xσ(i)Xσ(j)] = Eσ[X2
σ(i)] =

1

d

d∑
k=1

X2
k = µ2 .

On the other hand, if i ̸= j, then (σ(i), σ(j)) is distributed uniformly on pairs (k, l) such that
k ̸= l, thus

Eσ[Xσ(i)Xσ(j)] =
1

d(d− 1)

∑
k ̸=l

XkXl =
1

d(d− 1)

{( d∑
k=1

Xk

)2

−
d∑

k=1

X2
k

}
=
ϕ2 − µ2
d− 1

.
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Combining the previous two equations, we get for any i, j that

Eσ[Xσ(i)Xσ(j)] =
ϕ2 − µ2
d− 1

+
(
µ2 +

µ2 − ϕ2

d− 1

)
1(i = j) .

Hence,

Eσ
[
⟨v,Xσ⟩2

]
=
ϕ2 − µ2
d− 1

( d∑
i=1

vi

)2

+
(
µ2 +

µ2 − ϕ2

d− 1

) d∑
i=1

v2i

=
(
ϕ2 − µ2

) d

d− 1
⟨u∗, v⟩2 + µ2 +

µ2 − ϕ2

d− 1

=
d

d− 1

[
µ2(1− ⟨u∗, v⟩2) + ϕ2⟨u∗, v⟩2 − ϕ2

d

]
⩾ µ2(1− ⟨u∗, v⟩2) + ϕ2⟨u∗, v⟩2 − ϕ2

d
.

Recalling that µ2 ⩾ 1/2, that |ϕ| ⩽ η ⩽ 1 and d ⩾ 2025, then either ⟨u∗, v⟩2 ⩾ 1/4 and

µ2(1− ⟨u∗, v⟩2) + ϕ2⟨u∗, v⟩2 − ϕ2

d
⩾

1− ⟨u∗, v⟩2

2
+ 0.97⟨u∗, v⟩2ϕ2 ,

or ⟨u∗, v⟩2 < 1/4 and then

µ2(1− ⟨u∗, v⟩2) + ϕ2⟨u∗, v⟩2 − ϕ2

d
⩾

3

8
− 1

2025
⩾ 0.37

[
1− ⟨u∗, v⟩2 + ⟨u∗, v⟩2ϕ2

]
.

Combining the previous inequalities, we get in all cases that

Eσ
[
⟨v,Xσ⟩2

]
⩾ 0.37

[
1− ⟨u∗, v⟩2 + ⟨u∗, v⟩2ϕ2

]
. (164)

Upper bound on the fourth moment. We now turn to the control the conditional fourth
moment. Let v ∈ Sd−1 such that ⟨u∗, v⟩ ⩾ 0; we may write v =

√
1− α2u∗ + αw where

α =
√

1− ⟨u∗, v⟩2 and w ∈ Sd−1 is such that ⟨u∗, w⟩ = 0. We then have

Eσ
[
⟨v,Xσ⟩4

]
= Eσ

[(
α⟨w,Xσ⟩+

√
1− α2⟨u,Xσ⟩

)4]
⩽ 8Eσ

[
α4⟨w,Xσ⟩4 + (1− α2)2⟨u,Xσ⟩4

]
= 8

{
(1− ⟨u∗, v⟩2)2 Eσ

[
⟨w,Xσ⟩4

]
+ ⟨u∗, v⟩4ϕ4

}
. (165)

In light of (165), it remains to show that Eσ[⟨w,Xσ⟩4] ≲κ 1.
We start by writing:

Eσ
[
⟨w,Xσ⟩4

]
=

∑
1⩽i,j,k,l⩽d

wiwjwkwlE[Xσ(i)Xσ(j)Xσ(k)Xσ(l)] . (166)

We abbreviate “pairwise distinct” (indices in {1, . . . , d}) by p.d., and denote for i, j, k, l p.d.,

α4 = Eσ[X4
σ(i)]

α31 = Eσ[X3
σ(i)Xσ(j)]

α22 = Eσ[X2
σ(i)X

2
σ(j)]

α211 = Eσ[X2
σ(i)Xσ(j)Xσ(k)]

α1111 = Eσ[Xσ(i)Xσ(j)Xσ(k)Xσ(l)] ;
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these quantities are independent of i, j, k, l p.d. since σ is distributed uniformly on the symmetric
group, hence (σ(i), σ(j), σ(k), σ(l)) is distributed uniformly on the set of p.d. indices. Hence,
collecting the terms in the right-hand side of (166) depending on the distinct indices, we obtain

Eσ
[
⟨w,Xσ⟩4

]
=

(∑
i

w4
i

)
α4 + 4

( ∑
i,j p.d.

w3
iwj

)
α31 + 3

( ∑
i,j p.d.

w2
iw

2
j

)
α22+

+ 6

( ∑
i,j,k p.d.

w2
iwjwk

)
α211 +

( ∑
i,j,k,l p.d.

wiwjwkwl

)
α1111 . (167)

We control the sum in (167) by separately controlling the α· terms (that depend on X) and
their coefficients depending on w. The control of the former terms is simple, as we simply bound
all these terms by the empirical fourth moment µ4: for every 1 ⩽ r ⩽ 4 and ι1 ⩾ . . . ⩾ ιr ⩾ 1
such that ι1 + · · ·+ ιr = 4, we have

|αι1,...,ιr | ⩽ µ4 . (168)

To show (168), first note that since σ(1) is uniformly distributed in {1, . . . , d}, we have

α4 = Eσ[X4
σ(1)] =

1

d

d∑
i=1

X4
i = µ4 .

Now for ι1, . . . , ιr as above, Hölder’s inequality (with ι1/4 + · · ·+ ιr/4 = 1) implies that

|αι1,...,ιr | ⩽ Eσ[|Xσ(1)|ι1 · · · |Xσ(r)|ιr ] = Eσ[(X4
σ(1))

ι1/4 · · · (X4
σ(r))

ιr/4]

⩽ Eσ[X4
σ(1)]

ι1/4 · · ·Eσ[X4
σ(r)]

ιr/4 = µ4 .

We now turn to the control of the coefficients in (167) that depend on w. Although one
could in principle use the same method as above, namely Hölder’s inequality combined with the
fact that ∥w∥44 ⩽ ∥w∥42 = 1, this would result in a highly suboptimal bound in O(d2). In order
to improve this bound, we exploit the additional information that w is orthogonal to u∗, namely

0 = ⟨u∗, w⟩ = 1√
d

d∑
i=1

wi ,

so that
∑

iwi = 0. We will therefore decompose the sums in (167) by making the quantities∑
iwi = 0 and

∑
iw

2
i = 1 appear.

For the first term, we have
0 ⩽

∑
i

w4
i ⩽

∑
i

w2
i = 1 .

For the second term, we write∑
i,j p.d.

w3
iwj =

(∑
i

w3
i

)(∑
j

wj

)
−
∑
i

w4
i = −

∑
i

w4
i ∈ [−1, 0] .

For the third term, ∑
i,j p.d.

w2
iw

2
j =

(∑
i

w2
i

)2
−
∑
i

w4
i = 1−

∑
i

w4
i ∈ [0, 1] .

For the fourth term, by distinguishing the different possible configurations of i, j, k ∈ {1, . . . , d},∑
i,j,k p.d.

w2
iwjwk =

(∑
i

w2
i

)(∑
j

wj

)(∑
k

wk

)
−
∑
i

w4
i −

∑
i,j p.d.

w2
iw

2
j − 2

∑
i,j p.d.

w3
iwj . (169)
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Plugging the previous identities in (169), we obtain∑
i,j,k p.d.

w2
iwjwk = −

∑
i

w4
i −

(
1−

∑
i

w4
i

)
− 2

(
−
∑
i

w4
i

)
= 2

∑
i

w4
i − 1 ∈ [−1, 1] .

Finally, for the fifth term, we write (collecting the terms similarly to (167))∑
i,j,k,l p.d.

wiwjwkwl =
(∑

i

wi

)(∑
j

wj

)(∑
k

wk

)(∑
l

wl

)
−
∑
i

w4
i−

− 4
∑
i,j p.d.

w3
iwj − 3

∑
i,j p.d.

w2
iw

2
j − 6

∑
i,j,k p.d.

w2
iwjwk . (170)

Using the identities for the previous four terms, equation (170) becomes∑
i,j,k,l p.d.

wiwjwkwl = −
∑
i

w4
i − 4

(
−
∑
i

w4
i

)
− 3

(
1−

∑
i

w4
i

)
− 6

(
2
∑
i

w4
i − 1

)
= −6

∑
i

w4
i + 3 ∈ [−3, 3] .

Finally, injecting the previous bounds into the decomposition (167), we obtain

Eσ
[
⟨w,Xσ⟩4

]
⩽

∣∣∣∑
i

w4
i

∣∣∣ · |α4|+ 4

∣∣∣∣ ∑
i,j p.d.

w3
iwj

∣∣∣∣ · |α31|+ 3

∣∣∣∣ ∑
i,j p.d.

w2
iw

2
j

∣∣∣∣ · |α22|+

+ 6

∣∣∣∣ ∑
i,j,k p.d.

w2
iwjwk

∣∣∣∣ · |α211|+
∣∣∣∣ ∑
i,j,k,l p.d.

wiwjwkwl

∣∣∣∣ · |α1111|

⩽
(
1 + 4× 1 + 3× 1 + 6× 1 + 3

)
µ4 = 17µ4 ,

which combined with (165) gives

Eσ
[
⟨v,Xσ⟩4

]
⩽ 8

{
17(1− ⟨u∗, v⟩2)2µ4 + ⟨u∗, v⟩4ϕ4

}
. (171)

Symmetric condition. So far, we have established a lower bound on the second moment
Eσ[⟨v,Xσ⟩2] and an upper bound on the fourth moment Eσ[⟨v,Xσ⟩4], both over the random
permutation σ and conditionally on X. These upper and lower bounds are of the desired order
whenever X satisfies the following three conditions: η/2 ⩽ |⟨u∗, X⟩| ⩽ η, µ2(X) ⩾ 1/2, and
µ4(X) = Oκ(1). We are therefore reduced to lower-bounding the probability that X simultane-
ously satisfies those three conditions, which are symmetric in the coordinates of X.

We thus establish a lower bound on P
(
η/2 ⩽ |⟨u∗, X⟩| ⩽ η, µ2(X) ⩾ 1/2, µ4(X) ⩽ 2κ4

)
.

We start by writing

P
(
η/2 ⩽ |⟨u∗, X⟩| ⩽ η, µ2(X) ⩾ 1/2, µ4(X) ⩽ 2κ4

)
= P

(
η/2 ⩽ |⟨u∗, X⟩| ⩽ η

)
− P

(
{|⟨u∗, X⟩| ⩽ η} ∩ {µ2(X) < 1/2 or µ4(X) > 2κ4}

)
⩾ P

(
η/2 ⩽ |⟨u∗, X⟩| ⩽ η

)
− P

(
µ2(X) < 1/2

)
− P

(
µ4(X) > 2κ4

)
. (172)

Now, applying the Berry-Esseen inequality (Lemma 34) and proceeding as in the proof of
Lemma 1, using that E[(|Xi|/

√
d)3] ⩽ E[|Xi|8]3/8/d3/2 ⩽ κ3/d3/2, we get

P
(
η/2 ⩽ |⟨u∗, X⟩| ⩽ η

)
⩾

η√
2πe

− 2.24κ3√
d

⩾ 0.24 η − 2.25κ3√
d

. (173)
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We now upper bound P(µ4(X) > 2κ4). Applying Chebyshev’s inequality to
∑d

i=1X
4
i gives,

for any t > 0,

P
(∣∣∣1
d

d∑
i=1

X4
i − E[X4

1 ]
∣∣∣ > t

)
⩽

E[X8
1 ]

d · t2
⩽

κ8

d · t2
.

In particular, taking t = κ4, applying the triangle inequality and using that E[X4
1 ] ⩽ E[X8

1 ]
1/2 ⩽

κ4 by assumption, we get
P
(
µ4(X) > 2κ4

)
⩽ 1/d . (174)

Likewise, Chebyshev’s inequality implies that

P
(
µ2(X) < 1/2

)
⩽ P

(∣∣∣1
d

d∑
i=1

X2
i − 1

∣∣∣ > 1

2

)
⩽

4E[X4
1 ]

d
⩽

4κ4

d
. (175)

Plugging inequalities (173), (174) and (175) into (172) gives

P
(
η/2 ⩽ |⟨u∗, X⟩| ⩽ η, µ2(X) ⩾ 1/2, µ4(X) ⩽ 2κ4

)
⩾ 0.24 η − 2.25κ3√

d
− 1

d
− 4κ4

d
,

which is larger than 0.12 η whenever η ⩾ max(45κ3/
√
d, 80κ4/d). Now since d ⩾ 2025κ6 by

assumption, one has
√
d ⩾ 45κ3 ⩾ 45κ and thus 80κ4/d ⩽ 80κ3/(45

√
d) < 45κ3/

√
d; therefore,

the previous condition reduces to η ⩾ 45κ3/
√
d, which is satisfied by assumption.

Putting things together. We now conclude the proof. Define the event E by

E =
{
η/2 ⩽ |⟨u∗, X⟩| ⩽ η, µ2(X) ⩾ 1/2, µ4(X) ⩽ 2κ4

}
,

so that P(E) ⩾ 0.12η by the above. In addition, it follows respectively from (164) and (171)
that, under the event E,

Eσ
[
⟨v,Xσ⟩2

]
⩾ 0.37

[
1− ⟨u∗, v⟩2 + ⟨u∗, v⟩2(η/2)2

]
;

Eσ
[
⟨v,Xσ⟩4

]
⩽ 8

{
34κ4(1− ⟨u∗, v⟩2)2 + ⟨u∗, v⟩4η4

}
.

Plugging these upper and lower bounds into (163) gives:

Pσ
(
|⟨v,Xσ⟩| ⩾ 0.6√

2

[
1− ⟨u∗, v⟩2 + ⟨u∗, v⟩2η2/4

]1/2)
⩾

1

4

0.372
[
1− ⟨u∗, v⟩2 + ⟨u∗, v⟩2η2/4

]2
8
[
34κ4(1− ⟨u∗, v⟩2)2 + ⟨u∗, v⟩4η4

]
⩾

0.372

32

(1− ⟨u∗, v⟩2)2 + ⟨u∗, v⟩4ϕ4/16
34κ4(1− ⟨u∗, v⟩2)2 + ⟨u∗, v⟩4η4

⩾
1

8000κ4
.

Now, let s = 0.6√
2
[1− ⟨u∗, v⟩2 + ⟨u∗, v⟩2η2/4]1/2. From (161) and the above, we obtain

P
(
|⟨u∗, X⟩| ⩽ η, |⟨v,X⟩| ⩾ s

)
= E

[
1{|⟨u∗, X⟩| ⩽ η}Pσ

(
|⟨v,Xσ⟩| ⩾ s

)]
⩾ E

[
1E · Pσ

(
|⟨v,Xσ⟩| ⩾ s

)]
⩾

P(E)

8000κ4
⩾

0.12η

8000κ4
⩾

η

70 000κ4
.
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To conclude, note that

s =
0.6√
2

[
1− ⟨u∗, v⟩2 + ⟨u∗, v⟩2η2/4

]1/2
⩾

0.6√
2
max

{
1− ⟨u∗, v⟩2, η2/4

}1/2
,

and that by Lemma 37, if ⟨u∗, v⟩ ⩾ 0 then
√
1− ⟨u∗, v⟩2 ⩾ ∥u∗−v∥/

√
2; the numerical constant

in Lemma 2 is obtained by lower-bounding 0.6/(2
√
2) > 0.2.

Finally, the last part of Lemma 2 follows from (32), since under Assumption 4 one has
E[X4

1 ]
1/4 ⩽ κ = 4

2e∥X1∥ψ1 ⩽ 2
eK, which gives the desired claims by substituting for κ and

bounding the numerical constants.

Sketch of the argument to obtain the d−1/4 scaling

We now provide an (incomplete) high-level sketch of the argument alluded to in Section 3.3,
that leads to a nontrivial guarantee by combining Gaussian approximation with approximate
separation of supports.

The main idea is that an arbitrary vector v ∈ Sd−1 either admits a “dense” sub-vector
vI = (vi)i∈I (for some I ⊂ {1, . . . , d}) with lower-bounded ℓ2 norm, or a “sparse” sub-vector
vI with lower-bounded ℓ2 norm. In the first case one may resort to Gaussian approximation,
and in the second case one may argue that the supports of the vectors u∗ and v are “almost
separated”. In addition, in both cases we use the fact that the random vectors (⟨u∗I , XI⟩, ⟨vI , XI⟩)
and (⟨u∗Ic , XIc⟩, ⟨vIc , XIc⟩) are independent for any subset I ⊂ {1, . . . , d} (since they depend on
disjoint subsets of the independent variables (Xj)1⩽j⩽d).

Specifically, let v ∈ Sd−1 be arbitrary. Without loss of generality one may assume that
|v1| ⩾ . . . ⩾ |vd|. Define k = min{1 ⩽ k ⩽ d :

∑k
j=1 v

2
j ⩾ 0.01} and let I = {1, . . . , k}. In

particular, one has
∑k

j=1 v
2
j ⩾ 0.01 and k ⩽ 0.01d, and either k = 1 or

∑
j>k v

2
j > 0.98.

On the one hand, if k > 1, we have
∑

j>k |vj |3 ⩽ |vk|
∑

j>k v
2
j ⩽ |vk| ⩽ 1/

√
k, since kv2k ⩽∑k

j=1 v
2
j ⩽ 1. Combining this with the fact that

∑
j>k v

2
j > 0.98, that

∑
j>k(u

∗
j )

2 = (d−k)/d >

0.99 and |
∑

j>k u
∗
jvj | = |⟨u∗, v⟩ −

∑k
j=1 u

∗
jvj | = |

∑k
j=1 u

∗
jvj | ⩽

√
(
∑k

j=1(u
∗
j )

2)(
∑k

j=1 v
2
j ) ⩽√

k/d ⩽ 0.1, applying the Berry-Esseen Gaussian approximation bound on (⟨u∗Ic , XIc⟩, ⟨vIc , XIc⟩)
and using independence with the remaining variables, one may show that condition (31) holds
with η ≍ 1/

√
k.

On the other hand, regardless of the value of k ⩽ 0.01d, one has
√∑k

j=1(u
∗
j )

2 =
√
k/d

while
∑k

j=1 v
2
j ⩾ 0.01. In other words, a constant fraction of the “energy” of the vector v is

supported in I, while if k ≪ d only a small fraction of the energy of u∗ is supported on I. This
“approximate separation” of the supports of u∗, v implies that

∑k
j=1 u

∗
jXj is very small, while∑k

j=1 vjXj fluctuates on a constant scale. By using (one-dimensional) Gaussian approximation
on

∑
j>k u

∗
jXj , conditioning and independence with

∑k
j=1 u

∗
jXj ,

∑k
j=1 vjXj , and the fact that

|
∑k

j=1 u
∗
jXj | ≲

√
k/d with high probability, one may show that condition (31) holds with

η ≍
√
k/d.

Taking the best of the two guarantees above (depending on the value of k = k(v)), condi-
tion (31) holds down to η ≍ min(

√
k/d, 1/

√
k) ⩽ d−1/4 for any v ∈ Sd−1.

9.4 Improved regularity scales in generic directions?

We now discuss the phenomenon alluded to in Section 3.3, namely that Assumption 2 holds
down to a scale of 1/d in “typical” directions u∗ ∈ Sd−1. This is a consequence of the following
result of Klartag and Sodin [KS12], which states that for a “typical” vector u = (u1, . . . , ud) ∈
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Sd−1, if X = (X1, . . . , Xd) has i.i.d. coordinates then the distribution of the linear combination
⟨u,X⟩ =

∑d
j=1 ujXj approaches the Gaussian distribution at a rate of order 1/d. This rate is

faster than the usual 1/
√
d rate from the Berry-Esseen theorem for the usual normalized sum

⟨u∗d, X⟩ = 1√
d

∑d
j=1Xj .

Theorem (Theorem 1.1 in [KS12]). There exists a constant c ⩾ 1 such that the following holds.
Let ε ∈ (0, 1/2) and d ⩾ 1. Assume that X = (X1, . . . , Xd) has independent coordinates, with
E[Xj ] = 0 and E[X2

j ] = 1 for j = 1, . . . , d and with finite fourth moment. Let

κ =

(
1

d

d∑
j=1

E[X4
j ]

)1/4

.

Then, there is a subset Aε ⊂ Sd−1 with µd−1(Aε) ⩾ 1 − ε (where µd−1 stands for the uniform
probability measure on Sd−1) such that, for any u ∈ Aε, one has

sup
a,b∈R, a⩽b

∣∣∣P(a ⩽ ⟨u,X⟩ ⩽ b)− 1√
2π

∫ b

a
e−s

2/2ds
∣∣∣ ⩽ c log2(1/ε)κ4

d
. (176)

This immediately implies that there exists a subset A of Sd−1 with µd−1(A) ⩾ 1−1/d→d→∞
1 such that, for any u ∈ A, the margin probability P(|⟨u,X⟩| ⩽ t) is of order t as long as
t ≳ log2(d)/d (hence, Assumption 2 holds at least down to η ≍ log2(d)/d).

The reason why a “generic” direction u ∈ Sd−1 leads to a faster rate of Gaussian approxi-
mation (and therefore a smaller scale η for Assumption 2) than u∗d = (1/

√
d, . . . , 1/

√
d) is the

following. For the parameter u∗d, the rate of Gaussian approximation of order 1/
√
d cannot

be improved due to an arithmetic obstruction: if X1, . . . , Xd are i.i.d. Bernoulli, the quantity
⟨u∗d, X⟩ = 1√

d

∑d
j=1Xj takes values in the lattice Z/

√
d. This is due to the strong additive

structure of u∗d, all of whose coefficients are equal: hence, there are many cancellations in the
sum ⟨u∗d, X⟩ = 1√

d

∑d
j=1Xj , as any two opposite signs Xj , Xk cancel out. This means that

many different values of the vector X lead to the same value of ⟨u∗d, X⟩. However, this arith-
metic obstruction vanishes for a “generic” direction u = (u1, . . . , ud) ∈ Sd−1, which is much less
structured (for instance, all ratios uj/uk with j ̸= k are irrational numbers with probability 1).

These results suggest that, for a generic parameter direction u∗ ∈ Sd−1, the regularity
conditions (Definition 1) may hold at a scale ηd ≪ 1/

√
d. However, we do not know how to

prove this for the two-dimensional margin Assumption 3. Indeed, as previously discussed, a key
difficulty is that the property (23) must be established for every direction v ∈ Sd−1, including
those v for which Gaussian approximation fails. In addition, it is not clear how to extend
our arguments in Lemma 2 from the case of u∗ = u∗d to a generic u∗ ∈ Sd−1 lacking additive
structure, while incorporating the 1/d improvement of [KS12] in this case. We therefore leave
this question as an open problem:

Problem 1. Does there exist a sequence (ηd)d⩾1 with
√
d · ηd → 0 as d → ∞ such that

the following holds? Let X = (X1, . . . , Xd) be a random vector with i.i.d. sub-exponential
coordinates (Assumption 4 with K ≲ 1), for instance a Bernoulli design. There exists a subset
Ad ⊂ Sd−1 with µd−1(Ad) → 1 as d → ∞, such that for every u∗ ∈ Sd−1, the distribution X
satisfies Assumption 3 with parameter u∗, ηd and c ≲ 1.

In addition, does ηd = 1/d satisfy this property? And what is the smallest order of magnitude
of ηd such that this property holds?

In short, Problem 1 asks about the regularity scale of product measures (such as the Bernoulli
design) in “typical” directions. By Theorem 3 and Proposition 1, this amounts to investigating
the values of the parameter norm (for typical parameter directions) for which the MLE for
logistic regression behaves as in the case of a Gaussian design.
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A Tail conditions on real random variables

In this section, we gather some definitions and basic properties regarding tails of real valued
random variables. These are well-known that are simply recalled here to fix the constants. We
start with the definition of the sub-exponential and sub-Gaussian norms:

Definition 5 (ψα-norm). Let α > 0. If X is a real random variable, its ψα-norm is defined as

∥X∥ψα = sup
p⩾2

[
21/αe∥X∥p

p1/α

]
∈ [0,+∞] , (177)

where the supremum is taken over all real values of p ⩾ 2. We say that X is sub-exponential if
∥X∥ψ1 < +∞, and sub-Gaussian if ∥X∥ψ2 < +∞.

We mostly consider the cases α = 1 and α = 2. We refer to [Ver18, §2.5 and §2.7] for
equivalent definitions of the ψ1 and ψ2-norms.

Note that the normalization in the definition (177) ensures that (i) if E[X2] = 1, then
∥X∥ψα ⩾ e and (ii) if α ⩽ α′, then ∥X∥ψα ⩽ ∥X∥ψα′ . In addition, one has ∥X + X ′∥ψα ⩽
∥X∥ψα + ∥X ′∥ψα for every real valued random variables X,X ′ and every parameter α > 0.

In order to obtain sharp guarantees, we need the additional notion of sub-gamma random
variables [BLM13, §2.4].

Definition 6 (Sub-gamma random variables). Let X be a real valued random variable and
σ,K > 0. We say that X is (σ2,K)-sub-gamma if for every λ ∈ [0, 1/K) one has

E exp(λX) ⩽ exp

(
σ2λ2

2(1− λK)

)
. (178)

Recall that X is said to be centered if E[X] = 0. The basic properties of sub-gamma and
sub-exponential variables are gathered in the following lemma:

Lemma 35. Let X be a real random variable and σ,K > 0.

1. If ∥X∥ψα ⩽ K, then for every t ⩾ 1 one has

P
(
|X| ⩾ Kt1/α

)
⩽ e−2t . (179)

2. If X is (σ2,K)-sub-gamma, then for every t ⩾ 0, one has

P(X ⩾ σ
√
2t+Kt) ⩽ e−t . (180)

3. If X1, . . . , Xn are independent random variables such that Xi is (σ2i ,Ki)-sub-gamma (with
σi,Ki > 0) for every i = 1, . . . , n, then X1+ · · ·+Xn is (σ21 + · · ·+σ2n,max(K1, . . . ,Kn))-
sub-gamma. Also, if X is (σ2,K)-sub-gamma and α ⩾ 0, then αX is (α2σ2, αK)-sub-
gamma.

4. If X is centered and satisfies for every integer p ⩾ 2 that

E[|X|p] ⩽ σ2Kp−2p!/2 , (181)

then X is (σ2,K)-sub-gamma.

5. If X and −X are (σ2,K)-sub-gamma, then Var(X) ⩽ σ2 and ∥X∥ψ1 ⩽ 2 3
√
2emax(σ, 2K).
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6. If X is centered, Var(X) ⩽ σ2 and ∥X∥ψ1 ⩽ K (where K ⩾ eσ), then X is (σ2,K log(K/σ))-
sub-gamma. In addition, X is (K2/2,K/2)-sub-gamma.

In particular, it follows from the last two points of Lemma 35 that if X is centered and
K ⩾ eσ, the property that X (and −X) is (σ2,K)-sub-gamma is closely related to the conditions
Var(X) ⩽ σ2 and ∥X∥ψ1 ⩽ K. The sub-gamma condition is however slightly stronger, and
allows one to gain a factor of order log(K/σ). We actually use this improvement in order to
avoid additional logB factors in the setting of Theorem 1.

Proof. For the first point, for any p ⩾ 2, Markov’s inequality implies that

P(|X| ⩾ e∥X∥p) = P
(
|X|p ⩾ ep∥X∥pp

)
⩽

E[|X|p]
ep∥X∥pp

= e−p .

Letting p = 2t and bounding e∥X∥p ⩽ ∥X∥ψα(p/2)
1/α ⩽ Kt1/α concludes.

The second point is established in [BLM13, p. 29] using the Chernoff method, namely bound-
ing P(X ⩾ t) ⩽ e−λtEeλX and optimizing over λ ⩾ 0.

The third point follows from the definition and the fact that, by independence,

E
[
eλ(X1+···+Xn)

]
= E[eλX1 ] · · ·E[eλXn ] .

We now turn to the fourth point. For every λ ∈ [0, 1/K), one has

EeλX ⩽ 1 + λE[X] +
∑
p⩾2

λp E[|X|p]
p!

⩽ 1 +
σ2λ2

2

∑
p⩾2

λp−2Kp−2p!

p!

= 1 +
σ2λ2

2(1− λK)
⩽ exp

(
σ2λ2

2(1− λK)

)
.

For the fifth point, we first note that, as E[e|X|/(2K)] ⩽ E[eX/(2K)] + E[e−X/(2K)] < ∞, by
dominated convergence the function ϕ : λ 7→ logE[eλX ] is well-defined and twice continuously
differentiable over (−1/(2K), 1/(2K)), with ϕ(0) = 0, ϕ′(0) = E[X] and ϕ′′(0) = Var(X). Hence,
ϕ(λ) = E[X]λ + Var(X)λ2/2 + o(λ2) as λ → 0, and by assumption one has ϕ(λ) ⩽ σ2λ2

2(1−λK) =

σ2λ2/2 + o(λ2), hence E[X] = 0 and Var(X) ⩽ σ2. Next, in order to bound ∥X∥ψ1 , we apply
the sub-gamma condition (178) to λ = 1/(σ ∨ 2K), which gives:

E
[
exp

(
|X|

σ ∨ 2K

)
1(X ⩾ 0)

]
⩽ E

[
exp

(
X

σ ∨ 2K

)]
⩽ E

[
exp

(
σ2/σ2

2(1−K/(2K))

)]
= e .

Applying the same inequality to −X and summing gives:

E
[
exp

(
|X|

σ ∨ 2K

)]
⩽ 2e .

Now, a simple analysis of function shows that eu − eu ⩾ 0 for any u ⩾ 0, hence (applying this
to u/p)

(
eu
p

)p
⩽ eu. Hence, for any p ⩾ 3, one has

E
[(

e|X|
p(σ ∨ 2K)

)p]
⩽ E

[
exp

(
|X|

σ ∨ 2K

)]
⩽ 2e ,

so that 2e∥X∥p/p ⩽ 2(2e)1/p(σ ∨ 2K) ⩽ 2 3
√
2e(σ ∨ 2K), which proves the desired bound since

we also have 2e∥X∥2/2 ⩽ eσ ⩽ 2 3
√
2eσ.
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Let us now establish the sixth point. For every p > 2, one has for r > 1, using Hölder’s
inequality:

E[|X|p] = E[|X|2(1−1/r)|X|p−2+2/r]

⩽ E[X2]1−1/rE[X(p−2)r+2]1/r

⩽ σ2−2/r∥X∥[(p−2)r+2]/r
(p−2)r+2

⩽ σ2−2/r
[ [(p− 2)r + 2]K

2e

]p−2+2/r

= σ2
(Kr

2

)p−2(r
2

)2/r(K
σ

)2/r(p− 2 + 2/r

e

)p−2+2/r
.

Now let r/2 = log(K/σ) ⩾ 1, so that (K/σ)2/r = e. A direct analysis shows that the function
u 7→ (u/e)u increases on [1,+∞), and since r/2 ⩾ 1 one has 1 ⩽ p − 2 ⩽ p − 2 + 2/r ⩽ p − 1.
Hence, for any integer p ⩾ 3,(p− 2 + 2/r

e

)p−2+2/r
⩽

(p− 1

e

)p−1
⩽ (2π(p− 1))−1/2(p− 1)! ⩽ p!/(6

√
π) ,

where we used the standard Stirling-type inequalities√
2πp

(p
e

)p
⩽ p! ⩽ pp . (182)

In addition t1/t ⩽ e1/e for t > 0, so (r/2)2/r ⩽ e1/e. Combining the previous inequalities, we
obtain

E[|X|p] ⩽ σ2
(
K log(K/σ)

)p−2
e1+1/ep!/(6

√
π)

⩽ σ2
(
K log

(K
σ

))p−2
p!/2 , (183)

where we used that e1+1/e/(3
√
π) = 0.738 . . . ⩽ 1. By the fourth point, this implies that X is

(σ2,K log(K/σ))-sub-gamma. For the last statement, using the inequality (pe )
p ⩽ p! for p ⩾ 2,

we obtain

E[|X|p] ⩽
(Kp
2e

)p
⩽

(K
2

)p
p! =

1

2

K2

2

(K
2

)p−2
p! , (184)

so by the fourth point X is (K2/2,K/2)-sub-gamma.

Finally, we will also use the following consequence of Bennett’s inequality, which shows that
bounded variables are sub-gamma.

Lemma 36. Let X be a random variable such that E[X2] ⩽ σ2 and X ⩽ b almost surely, for
some σ2 > 0 and b > 0. Then

1. X − E[X] is (σ2, 3b)-sub-gamma.

2. For all λ ∈ [0, b−1], logEeλX ⩽ λE[X] + σ2/b2.

Proof. By homogeneity we assume that b = 1. Let X ′ = X − E[X]. Using Bennett’s inequality
[BLM13, Theorem 2.9], one has, for all λ > 0,

logEeλX
′
⩽ σ2ϕ(λ) , ϕ(λ) = eλ − λ− 1 . (185)

Moreover, for every λ ∈ [0, 1/3)

ϕ(λ) =
∑
k⩾2

λk

k!
=
λ2

2

∑
k⩾0

λk

(k + 2)!/2
⩽
λ2

2

∑
k⩾0

λk

3k
=

λ2

2(1− 3λ)
,

where we used that (k + 2)!/2 =
∏k+2
j=3 j ⩾ 3k for k ⩾ 1. The first point is proved. For the

second point, we start from (185) and use that ϕ(λ) ⩽ ϕ(1) = e− 2 ⩽ 1 for all λ ∈ [0, 1].
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B Polar coordinates and spherical caps

B.1 Polar coordinates

Depending on the situation, it may be more convenient to express the position of θ relative to
θ∗ (with direction u∗ = θ∗/∥θ∗∥) in either of the following two equivalent ways: (1) in terms of
the component ⟨u∗, θ⟩ parallel to u∗ and of the orthogonal component θ − ⟨u∗, θ⟩u∗; or (2) in
terms of the norm ∥θ∥ and of the direction u = θ/∥θ∥. The following lemma gathers inequalities
relating the two representations.

Lemma 37. Let θ, θ∗ ∈ Rd, and set u = θ/∥θ∥, u∗ = θ∗/∥θ∗∥ ∈ Sd−1 and θ⊥ = θ − ⟨u∗, θ⟩u∗.

1. If ⟨u∗, u⟩ ⩾ 0, then

∥u− u∗∥√
2

⩽
∥θ⊥∥
∥θ∥

=
√
1− ⟨u, u∗⟩2 ⩽ ∥u− u∗∥ . (186)

2. If ∥u− u∗∥ ⩽ 1, then ∥θ∥/2 ⩽ ⟨u∗, θ⟩ ⩽ ∥θ∥.

3. One has

|⟨u∗, θ − θ∗⟩| ⩽
∣∣∥θ∥ − ∥θ∗∥

∣∣+ ∥θ∗∥ · ∥u− u∗∥2

2
. (187)

4. One has ∣∣∥θ∥ − ∥θ∗∥
∣∣ ⩽ |⟨u∗, θ − θ∗⟩|+ ∥θ⊥∥2

∥θ∥+ ∥θ∗∥
. (188)

Proof. We start with the first point. By orthogonality,

∥θ⊥∥2 = ∥θ∥2 − ⟨u∗, θ⟩2 = ∥θ∥2
[
1− ⟨u∗, u⟩2

]
(189)

= ∥θ∥2
[
1− ⟨u∗, u⟩

][
1 + ⟨u∗, u⟩

]
=

1

2
∥θ∥2∥u− u∗∥2

[
1 + ⟨u∗, u⟩

]
.

Hence, if ⟨u∗, u⟩ ⩾ 0, then

1

2
∥θ∥2∥u− u∗∥2 ⩽ ∥θ⊥∥2 ⩽ ∥θ∥2∥u− u∗∥2 ,

which together with the identity (189) proves the first claim. The second point follows from the
fact that

⟨u∗, θ⟩
∥θ∥

= ⟨u, u∗⟩ = 1− 1

2
∥u− u∗∥2 ∈

[1
2
, 1
]
.

We now turn to the third point. Since ⟨u∗, θ∗⟩ = ∥θ∗∥, we have

|⟨u∗, θ − θ∗⟩| =
∣∣∥θ∥⟨u∗, u⟩ − ∥θ∗∥

∣∣ ⩽ ∣∣(∥θ∥ − ∥θ∗∥)⟨u∗, u⟩
∣∣+ ∣∣∥θ∗∥(⟨u∗, u⟩ − 1)

∣∣
⩽

∣∣∥θ∥ − ∥θ∗∥
∣∣+ ∥θ∗∥ · ∥u− u∗∥2

2
,

where we used that ∥u− u∗∥2 = 2(1− ⟨u, u∗⟩). For the fourth point, note that(
∥θ∥+ ∥θ∗∥

)∣∣∥θ∥ − ∥θ∗∥
∣∣ = ∣∣∥θ∥2 − ∥θ∗∥2

∣∣
=

∣∣∥θ⊥∥2 + ⟨u∗, θ⟩2 − ⟨u∗, θ∗⟩2
∣∣

⩽ ∥θ⊥∥2 + |⟨u∗, θ + θ∗⟩| · |⟨u∗, θ − θ∗⟩|
⩽ ∥θ⊥∥2 + (∥θ∥+ ∥θ∗∥) · |⟨u∗, θ − θ∗⟩| ;

dividing by ∥θ∥+ ∥θ∗∥ gives the claimed inequality.
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B.2 Spherical caps

In Section 6.3, we defined spherical caps through their angles as

C(u, ε) =
{
v ∈ Sd−1, ⟨u, v⟩ ⩾ 0, | sin(u, v)| ⩽ ε

}
, (190)

for any u ∈ Sd−1 and ε ∈ [0, 1], where (u, v) denotes the angle between two unit vectors, that is
(u, v) = arccos(⟨u, v⟩). Spherical caps can be equivalently defined using the Euclidean distance
by

C̃(u, r) =
{
v ∈ Sd−1, ∥u− v∥ ⩽ r

}
. (191)

The following result provides a formal statement of this equivalence.

Fact 6. For every ε ∈ [0, 1], C(u, ε) = C̃(u, rε), where rε =
√

2
(
1−

√
1− ε2

)
. Moreover, it

holds that ε ⩽ rε ⩽
√
2ε and

C(u, ε/
√
2) ⊂ C̃(u, ε) ⊂ C(u, ε) . (192)

Proof. This simply follows from the fact that for any two vectors u, v on the unit sphere, denoting
by ϕ the angle between them, one has

∥u− v∥2 = 2
(
1− ⟨u, v⟩

)
= 2

(
1− cosϕ

)
= 2

(
1−

√
1− sin2 ϕ

)
.

In addition, by concavity, for all t ∈ [0, 1], 1− t ⩽
√
1− t ⩽ 1− t/2. Finally, (192) follows from

the first point of Lemma 37.

C Proof of Proposition 1

In this section we provide the proof of Proposition 1 from Section 2.2, regarding the necessity
of the two-dimensional margin assumption.

We start with the following simple fact.

Fact 7. Let Z and Z ′ be real sub-exponential variables with ∥Z∥ψ1 ⩽ K, ∥Z ′∥ψ1 ⩽ K ′, for some
K,K ′ ⩾ e. Then for all λ ⩾ K ′, E[Z21(Z ′ ⩾ λ)] ⩽ K2e−λ/K

′.

Proof. By the Cauchy-Schwarz inequality, the first point of Lemma 35 and Definition 5,

E
[
Z21(Z ′ ⩾ λ)

]
⩽

√
EZ4

√
P(Z ′ ⩾ λ) ⩽

√(4K
2e

)4√
e−2λ/K′ ⩽ (2/e)2K2e−λ/K

′
.

Proof of Proposition 1. For every v ∈ Sd−1 and c0 ⩾ 1,

⟨HX(θ
∗)v, v⟩ = E

[
σ′(B⟨u∗, X⟩)⟨v,X⟩2

]
= E

[
σ′(B⟨u∗, X⟩)1

(
|⟨u∗, X⟩| > c0 logB

B

)
⟨v,X⟩2

]
+ E

[
σ′(B⟨u∗, X⟩)1

(
|⟨u∗, X⟩| ⩽ c0 logB

B

)
⟨v,X⟩2

]
⩽

1

Bc0
+ E

[
1
(
|⟨u∗, X⟩| ⩽ c0 logB

B

)
⟨v,X⟩2

]
.
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In view of Remark 1, we furthermore let m = max
{
B−1, ∥u∗ − v∥

}
. Conditioning on the value

of |⟨v,X⟩|, for every C ⩾ 1, the expectation in the second term above rewrites

E
[
1
(
|⟨u∗, X⟩| ⩽ c0 logB

B

)
⟨v,X⟩2

]
= E

[
1
(
|⟨u∗, X⟩| ⩽ c0 logB

B
; |⟨v,X⟩| < m

C

)
⟨v,X⟩2

]
+ E

[
1
(
|⟨u∗, X⟩| ⩽ c0 logB

B
; |⟨v,X⟩| ⩾ m

C

)
⟨v,X⟩2

]
. (193)

Regarding the first term, we find using Assumption 2 that

E
[
1
(
|⟨u∗, X⟩| ⩽ c0 logB

B
; |⟨v,X⟩| < m

C

)
⟨v,X⟩2

]
⩽
m2

C2
P
(
|⟨u∗, X⟩| ⩽ c0 logB

B

)
⩽
m2

B
· c c0 logB

C2
.

Finally, we further decompose the second term in (193). For all λ ⩾ m/C,

E
[
1
{
|⟨u∗, X⟩| ⩽ c0 logB

B
; |⟨v,X⟩| ⩾ m

C

}
⟨v,X⟩2

]
= E

[
1
{
|⟨u∗, X⟩| ⩽ c0 logB

B
; |⟨v,X⟩| ∈

[m
C
,λ

)}
⟨v,X⟩2

]
+ E

[
1
(
|⟨u∗, X⟩| ⩽ c0 logB

B
; |⟨v,X⟩| ⩾ λ

)
⟨v,X⟩2

]
⩽ λ2 P

(
|⟨u∗, X⟩| ⩽ c0 logB

B
; |⟨v,X⟩| ⩾ m

C

)
+ E

[
1
(
|⟨u∗, X⟩| ⩽ c0 logB

B

)
1
(
|⟨v,X⟩| ⩾ λ

)
⟨v,X⟩2

]
. (194)

We now bound the last term using Fact 7. From now on, we let η = B−1 and c = c0 logB. Note
that by the triangle inequality, on the event {|⟨u∗, X⟩| ⩽ cη}, letting w = (u∗ − v)/∥u∗ − v∥ ∈
Sd−1,

|⟨v,X⟩| ⩽ |⟨u∗, X⟩|+ ∥u∗ − v∥ · |⟨w,X⟩| ⩽ cη +m|⟨w,X⟩| .

Hence,
1(|⟨u∗, X⟩| ⩽ cη)1(|⟨v,X⟩| ⩾ λ) ⩽ 1(m|⟨w,X⟩| ⩾ λ− cη) .

Therefore, by Fact 7, for all λ ⩾ mK + cη,

E
[
1(|⟨u∗, X⟩| ⩽ cη)1(|⟨v,X⟩| ⩾ λ)⟨v,X⟩2

]
⩽ E

[
1(m|⟨w,X⟩| ⩾ λ− cη)⟨v,X⟩2

]
⩽

4

e2
K2 exp

(
− λ− cη

mK

)
.

In particular, letting λ = 2mK(3 log(KB) + logC0), it holds that λ− cη ⩾ λ/2 ⩾ mK and

exp
(
− λ− cη

mK

)
⩽ exp

(
− λ

2mK

)
=

1

C0K3B3
,

from which we deduce that the second term in (194) can be bounded as

E
[
1
(
|⟨u∗, X⟩| ⩽ c0 logB

B

)
1
(
|⟨v,X⟩| ⩾ λ

)
⟨v,X⟩2

]
⩽

4

e2
· 1

C0KB3
⩽

4

e3
· m

2

C0B
, (195)

since B−3 ⩽ m2/B.
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Putting everything together, we find that

m2

C0B
⩽ E

[
σ′(B⟨u∗, X⟩)⟨v,X⟩2

]
⩽

1

Bc0
+
m2

B
· c c0 logB

C2
+ λ2 P

(
|⟨u∗, X⟩| ⩽ c0 logB

B
; |⟨v,X⟩| ⩾ m

C

)
+

4

e3
· m

2

B
. (196)

We now choose the values of the parameters c0 and C in such a way that in the inequality above,
the three terms which do not involve the probability describing the margin condition add up to
at most 3m2/(4C0B). First, we set c0 = 3+log(4C0) so that B−c0 ⩽ B−3/(4C0) ⩽ m2/(4C0B).
Next we let C = 2

√
c0C0c logB, and finally in (195) we further bound 4/e3 ⩽ 1/4. Rearranging

the terms in (196) yields

P
(
|⟨u∗, X⟩| ⩽ c0 logB

B
; |⟨v,X⟩| ⩾ m

C

)
⩾

m2

4C0λ2B
.

the result follows by further bounding λ2.
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