On the optimality of anytime Hedge in the stochastic regime

Jaouad Mourtada, Stéphane Gaïffas

CMAP, École polytechnique

CMStatistics 2018 Pisa, 15/12/18

<u>Reference</u>: "On the optimality of the Hedge algorithm in the stochastic regime", J. Mourtada & S. Gaïffas, arXiv preprint arXiv:1809.01382.

Hedge setting

Experts i = 1, ..., M; can be thought of as sources of predictions. Aim is to predict almost as well as the best expert in hindsight.

Hedge problem (= online linear optimization on the simplex)

At each time step t = 1, 2, ...

- Forecaster chooses probability distribution
 v_t = (v_{i,t})_{1≤i≤M} ∈ Δ_M on the experts;
- Solution Environment chooses loss vector $\ell_t = (\ell_{i,t})_{1 \leq i \leq M} \in [0,1]^M$;
- **§** Forecaster incurs loss $\ell_t := \langle \mathbf{v}_t, \boldsymbol{\ell}_t \rangle = \sum_{i=1}^{M} v_{i,t} \ell_{i,t}$.

Goal: Control, for every loss vectors $\ell_t \in [0, 1]^M$, the regret

$$R_T = \sum_{t=1}^T \ell_t - \min_{1 \leq i \leq M} \sum_{t=1}^T \ell_{i,t}.$$

First observation: Follow the Leader (FTL) / ERM, $v_{i_t,t} = 1$ where $i_t \in \operatorname{argmin}_i \sum_{s=1}^{t-1} \ell_{i,s} \Rightarrow$ no sublinear regret ! Indeed, let

$$(\ell_{1,1}, \ell_{2,1}), (\ell_{1,2}, \ell_{2,2}), (\ell_{1,3}, \ell_{2,3}), \dots = (1/2, 0), (0, 1), (1, 0), \dots$$

Then, $\sum_{t=1}^{T} \langle \mathbf{v}_t, \ell_t \rangle = T - \frac{1}{2}$, but $\sum_{t=1}^{T} \ell_{2,t} \leqslant \frac{T-1}{2}$, hence $R_T \geqslant \frac{T-1}{2} \neq o(T)$.

Hedge algorithm and regret bound

First observation: Follow the Leader (FTL) / ERM, $v_{i_t,t} = 1$ where $i_t \in \operatorname{argmin}_i \sum_{s=1}^{t-1} \ell_{i,s} \Rightarrow$ no sublinear regret !

Hedge algorithm (Constant learning rate)

$$V_{i,t} = rac{e^{-\eta L_{i,t-1}}}{\sum_{j=1}^{M} e^{-\eta L_{j,t-1}}}$$

where $L_{i,t} = \sum_{s=1}^{t} \ell_{i,s}$, η learning rate.

Regret bound [Freund & Schapire 1997; Vovk, 1998]:

$$R_T \leqslant rac{\log M}{\eta} + rac{\eta T}{8} \leqslant \sqrt{(T/2)\log M}$$

for $\eta = \sqrt{8(\log M)/T}$ tuned knowing fixed time horizon *T*. $O(\sqrt{T \log M})$ regret bound is minimax (worst-case) optimal.

Hedge algorithm (Time-varying learning rate)

$$v_{i,t} = rac{e^{-\eta_t L_{i,t-1}}}{\sum_{j=1}^M e^{-\eta_t L_{j,t-1}}}$$

where $L_{i,t} = \sum_{s=1}^{t} \ell_{i,s}$, η_t learning rate.

Regret bound: if η_t decreases,

$$R_T \leqslant \frac{\log M}{\eta_T} + \frac{1}{8} \sum_{t=1}^T \eta_t \leqslant \sqrt{T \log M}$$

for $\eta_t = \sqrt{2(\log M)/t}$, valid for every horizon T (anytime). $O(\sqrt{T \log M})$ regret bound is minimax (worst-case) optimal.

Beyond worst case: adaptivity to easy stochastic instances

• Hedge with $\eta \simeq \sqrt{(\log M)/T}$ (constant) or $\eta_t \simeq \sqrt{(\log M)/t}$ (anytime) achieve optimal worst case $O(\sqrt{T \log M})$ regret.

¹E.g., van Erven et al., 2011; Gaillard et al., 2014; Luo & Schapire, 2015.

Beyond worst case: adaptivity to easy stochastic instances

- Hedge with $\eta \simeq \sqrt{(\log M)/T}$ (constant) or $\eta_t \simeq \sqrt{(\log M)/t}$ (anytime) achieve optimal worst case $O(\sqrt{T \log M})$ regret.
- However, worst-case is **pessimistic** and can lead to **overly conservative** algorithms.
- "Easy" problem instance: stochastic case. If the loss vectors ℓ_1, ℓ_2, \ldots are i.i.d. (e.g., $\ell_{i,t} = \ell(f_i(X_t), Y_t))$, FTL/ERM achieves constant $O(\log M)$ regret \Rightarrow fast rate.

¹E.g., van Erven et al., 2011; Gaillard et al., 2014; Luo & Schapire, 2015.

- Hedge with $\eta \simeq \sqrt{(\log M)/T}$ (constant) or $\eta_t \simeq \sqrt{(\log M)/t}$ (anytime) achieve optimal worst case $O(\sqrt{T \log M})$ regret.
- However, worst-case is **pessimistic** and can lead to **overly conservative** algorithms.
- "Easy" problem instance: stochastic case. If the loss vectors ℓ_1, ℓ_2, \ldots are i.i.d. (e.g., $\ell_{i,t} = \ell(f_i(X_t), Y_t))$, FTL/ERM achieves constant $O(\log M)$ regret \Rightarrow fast rate.
- Recent line of work¹: algorithms that combine worst-case $O(\sqrt{T \log M})$ regret with faster rate on "easier" instances.
- Example: AdaHedge algorithm [van Erven et al., 2011,2015]. Data-dependent learning rate η_t .
 - Worst-case: "safe" $\eta_t \asymp \sqrt{(\log M)/t}$, $O(\sqrt{T \log M})$ regret;
 - Stochastic case: $\eta_t \asymp cst \ (\approx FTL), \ O(\log M)$ regret.

¹E.g., van Erven et al., 2011; Gaillard et al., 2014; Luo & Schapire, 2015.

Our result: anytime Hedge with "conservative" $\eta_t \approx \sqrt{(\log M)/t}$ is actually optimal in the easy stochastic regime!

• Stochastic instance: i.i.d. loss vectors ℓ_1, ℓ_2, \ldots such that $\mathbb{E}[\ell_{i,t} - \ell_{i^*,t}] \ge \Delta$ for $i \neq i^*$ (where $i^* = \operatorname{argmin}_i \mathbb{E}[\ell_{i,t}]$).

Proposition (M., Gaïffas, 2018)

On any stochastic instance with sub-optimality gap Δ , anytime Hedge with $\eta_t \simeq \sqrt{(\log M)/t}$ achieves, for every $T \ge 1$:

$$\mathbb{E}[R_T] \lesssim rac{\log M}{\Delta}$$
 .

Remark: $\frac{\log M}{\Delta}$ regret is optimal under the gap assumption.

Anytime Hedge vs. Fixed horizon Hedge

Theorem (M., Gaïffas, 2018)

On any stochastic instance with sub-optimality gap Δ , anytime Hedge with $\eta_t \simeq \sqrt{(\log M)/t}$ achieves, for every $T \ge 1$:

$$\mathbb{E}[R_T] \lesssim rac{\log M}{\Delta}$$
.

Proposition (M., Gaïffas, 2018)

If $\ell_{i^*,t} = 0$, $\ell_{i,t} = 1$ for $i \neq i^*$, $t \ge 1$, a stochastic instance with gap $\Delta = 1$, constant Hedge with $\eta_t \asymp \sqrt{(\log M)/T}$ achieves

$$R_T \asymp \sqrt{T \log M}$$
.

- Seemingly similar Hedge variants behave very differently on stochastic instances!
- Even if horizon T is known, anytime variant is preferable.

Some proof ideas

- Divide time two phases $[1, \tau]$ (dominated by noise) and $[\tau, T]$ (weights concentrate fast to i^*), with $\tau \simeq \frac{\log M}{\Delta^2}$.
- Early phase: worst-case regret $R_{\tau} \lesssim \sqrt{\tau \log M} \lesssim \frac{\log M}{\Delta}$.
- At the beginning of late phase, *i.e.* $t \approx \tau \approx \frac{\log M}{\Delta^2}$, two things occur simultaneously:
 - *i** linearly dominates the other experts: for every $i \neq i^*$, $L_{i,t} L_{i^*,t} \gtrsim \frac{1}{2}\Delta t$. Hoeffding: it suffices that $Me^{-t\Delta^2} \lesssim 1$.
 - 2 Expert *i*^{*} receives at least 1/2 of the weights: under previous condition, it suffices that $Me^{-\Delta\sqrt{t\log M}} \lesssim 1$.
- Condition (2) eliminates potentially linear dependence on M in the bound. To control regret in the second phase, we then use (1) and the fact that for c > 0, $\sum_{t \ge 0} e^{-c\sqrt{t}} \lesssim \frac{1}{c^2}$.

The advantage of adaptive algorithms

- Stochastic regime with gap △ often considered in the literature to show the improvement of adaptive algorithms.
- However, anytime Hedge achieves optimal $O(\frac{\log M}{\Delta})$ regret in this case. No need to tune η_t ?

²Mammen & Tsybakov, 1999; Bartlett & Mendelson, 2006.

The advantage of adaptive algorithms

- Stochastic regime with gap △ often considered in the literature to show the improvement of adaptive algorithms.
- However, anytime Hedge achieves optimal $O(\frac{\log M}{\Delta})$ regret in this case. No need to tune η_t ?
- (β, B) -Bernstein condition² $(\beta \in [0, 1], B > 0)$: for $i \neq i^*$,

$$\mathbb{E}[(\ell_{i,t}-\ell_{i^*,t})^2] \leqslant \mathbb{B}\mathbb{E}[\ell_{i,t}-\ell_{i^*,t}]^{\beta}.$$

Proposition (Koolen, Grünwald & van Erven, 2016)

Algorithms with so-called "second-order regret bounds" (including AdaHedge) achieve on (β, B) -Bernstein stochastic losses:

$$\mathbb{E}[R_T] \lesssim (\frac{B}{\log M})^{\frac{1}{2-\beta}} T^{\frac{1-\beta}{2-\beta}} + \log M.$$

For $\beta = 1$, gives $O(B \log M)$ regret; we can have $B \ll \frac{1}{\Delta}$!

²Mammen & Tsybakov, 1999; Bartlett & Mendelson, 2006.

The advantage of adaptive algorithms

- (1, *B*)-Bernstein condition: $\mathbb{E}[(\ell_{i,t} \ell_{i^*,t})^2] \leq B\mathbb{E}[\ell_{i,t} \ell_{i^*,t}].$
- In this case, adaptive algorithms achieve $O(B \log M)$ regret.
- We have $B \leq \frac{1}{\Delta}$, but potentially $B \ll \frac{1}{\Delta}$ (e.g., low noise).

Proposition

There exists a (1,1)-Bernstein stochastic instance on which anytime Hedge satisfies

$$\mathbb{E}[R_T]\gtrsim \sqrt{T\log M}$$
 .

In fact, gap Δ (essentially) characterizes anytime Hedge's regret on any stochastic instance: for $T\gtrsim 1/\Delta^2$,

$$\mathbb{E}[R_T] \gtrsim \frac{1}{(\log M)^2 \Delta}$$

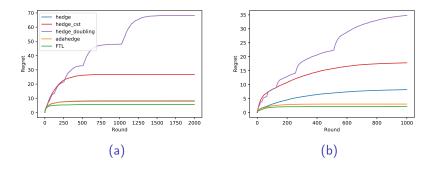


Figure: Cumulative regret of Hedge algorithms on two stochastic instances. (a) Stochastic instance with a gap, independent losses across experts ($M = 20, \Delta = 0.1$); (b) Bernstein instance with small Δ , but small B ($M = 10, \Delta = 0.04, B = 4$).

- Despite conservative learning rate (*i.e.*, large penalization), anytime Hedge achieves O(^{log M}/_Δ) regret, adaptively in the gap Δ, in the easy stochastic case.
- Not the case with fixed-horizon $\eta_t \simeq \sqrt{(\log M)/T}$ instead of $\eta_t \simeq \sqrt{(\log M)/t}$.
- Tuning the learning rate does help in some situations.
- Result of a similar flavor in stochastic optimization³: SGD with step size $\eta_t \simeq \frac{1}{\sqrt{t}}$ achieves $O(\frac{1}{\mu T})$ excess risk after averaging on μ -strongly convex problems (adaptively in μ). Not directly related, in fact "opposite" phenomenon.

³Moulines & Bach, 2011.

Thank you!