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Hedge setting

Experts i = 1, . . . ,M; can be thought of as sources of predictions.
Aim is to predict almost as well as the best expert in hindsight.

Hedge problem (= online linear optimization on the simplex)

At each time step t = 1, 2, . . .
1 Forecaster chooses probability distribution

vt = (vi ,t)16i6M ∈ ∆M on the experts;
2 Environment chooses loss vector `t = (`i ,t)16i6M ∈ [0, 1]M ;
3 Forecaster incurs loss `t := 〈vt , `t〉 =

∑M
i=1 vi ,t`i ,t .

Goal: Control, for every loss vectors `t ∈ [0, 1]M , the regret

RT =
T∑
t=1

`t − min
16i6M

T∑
t=1

`i ,t .



Hedge algorithm and regret bound

First observation: Follow the Leader (FTL) / ERM, vit ,t = 1
where it ∈ argmini

∑t−1
s=1 `i ,s ⇒ no sublinear regret !

Indeed, let

(`1,1, `2,1), (`1,2, `2,2), (`1,3, `2,3), · · · = (1/2, 0), (0, 1), (1, 0), . . .

Then,
∑T

t=1〈vt , `t〉 = T − 1
2 , but

∑T
t=1 `2,t 6

T−1
2 , hence

RT > T−1
2 6= o(T ).



Hedge algorithm and regret bound

First observation: Follow the Leader (FTL) / ERM, vit ,t = 1
where it ∈ argmini

∑t−1
s=1 `i ,s ⇒ no sublinear regret !

Hedge algorithm (Constant learning rate)

vi ,t =
e−ηLi,t−1∑M
j=1 e

−ηLj,t−1

where Li ,t =
∑t

s=1 `i ,s , η learning rate.

Regret bound [Freund & Schapire 1997; Vovk, 1998]:

RT 6
logM

η
+
ηT

8
6

√
(T/2) logM

for η =
√

8(logM)/T tuned knowing fixed time horizon T .

O(
√
T logM) regret bound is minimax (worst-case) optimal.



Hedge algorithm and regret bound

Hedge algorithm (Time-varying learning rate)

vi ,t =
e−ηtLi,t−1∑M
j=1 e

−ηtLj,t−1

where Li ,t =
∑t

s=1 `i ,s , ηt learning rate.

Regret bound: if ηt decreases,

RT 6
logM

ηT
+

1
8

T∑
t=1

ηt 6
√
T logM

for ηt =
√

2(logM)/t, valid for every horizon T (anytime).

O(
√
T logM) regret bound is minimax (worst-case) optimal.



Beyond worst case: adaptivity to easy stochastic instances

Hedge with η �
√

(logM)/T (constant) or ηt �
√

(logM)/t
(anytime) achieve optimal worst case O(

√
T logM) regret.

However, worst-case is pessimistic and can lead to overly
conservative algorithms.
“Easy” problem instance: stochastic case. If the loss vectors
`1, `2, . . . are i.i.d. (e.g., `i ,t = `(fi (Xt),Yt)), FTL/ERM
achieves constant O(logM) regret ⇒ fast rate.
Recent line of work1: algorithms that combine worst-case
O(
√
T logM) regret with faster rate on “easier” instances.

Example: AdaHedge algorithm [van Erven et al., 2011,2015].
Data-dependent learning rate ηt .

Worst-case: “safe” ηt �
√

(logM)/t, O(
√
T logM) regret;

Stochastic case: ηt � cst (≈ FTL), O(logM) regret.

1E.g., van Erven et al., 2011; Gaillard et al., 2014; Luo & Schapire, 2015.



Beyond worst case: adaptivity to easy stochastic instances

Hedge with η �
√

(logM)/T (constant) or ηt �
√

(logM)/t
(anytime) achieve optimal worst case O(

√
T logM) regret.

However, worst-case is pessimistic and can lead to overly
conservative algorithms.
“Easy” problem instance: stochastic case. If the loss vectors
`1, `2, . . . are i.i.d. (e.g., `i ,t = `(fi (Xt),Yt)), FTL/ERM
achieves constant O(logM) regret ⇒ fast rate.

Recent line of work1: algorithms that combine worst-case
O(
√
T logM) regret with faster rate on “easier” instances.

Example: AdaHedge algorithm [van Erven et al., 2011,2015].
Data-dependent learning rate ηt .

Worst-case: “safe” ηt �
√

(logM)/t, O(
√
T logM) regret;

Stochastic case: ηt � cst (≈ FTL), O(logM) regret.

1E.g., van Erven et al., 2011; Gaillard et al., 2014; Luo & Schapire, 2015.



Beyond worst case: adaptivity to easy stochastic instances

Hedge with η �
√

(logM)/T (constant) or ηt �
√

(logM)/t
(anytime) achieve optimal worst case O(

√
T logM) regret.

However, worst-case is pessimistic and can lead to overly
conservative algorithms.
“Easy” problem instance: stochastic case. If the loss vectors
`1, `2, . . . are i.i.d. (e.g., `i ,t = `(fi (Xt),Yt)), FTL/ERM
achieves constant O(logM) regret ⇒ fast rate.
Recent line of work1: algorithms that combine worst-case
O(
√
T logM) regret with faster rate on “easier” instances.

Example: AdaHedge algorithm [van Erven et al., 2011,2015].
Data-dependent learning rate ηt .

Worst-case: “safe” ηt �
√

(logM)/t, O(
√
T logM) regret;

Stochastic case: ηt � cst (≈ FTL), O(logM) regret.

1E.g., van Erven et al., 2011; Gaillard et al., 2014; Luo & Schapire, 2015.



Optimality of anytime Hedge in the stochastic regime

Our result: anytime Hedge with “conservative” ηt �
√

(logM)/t is
actually optimal in the easy stochastic regime!

Stochastic instance: i.i.d. loss vectors `1, `2, . . . such that
E[`i ,t − `i∗,t ] > ∆ for i 6= i∗ (where i∗ = argmini E[`i ,t ]).

Proposition (M., Gaïffas, 2018)

On any stochastic instance with sub-optimality gap ∆, anytime
Hedge with ηt �

√
(logM)/t achieves, for every T > 1:

E[RT ] .
logM

∆
.

Remark: log M
∆ regret is optimal under the gap assumption.



Anytime Hedge vs. Fixed horizon Hedge

Theorem (M., Gaïffas, 2018)

On any stochastic instance with sub-optimality gap ∆, anytime
Hedge with ηt �

√
(logM)/t achieves, for every T > 1:

E[RT ] .
logM

∆
.

Proposition (M., Gaïffas, 2018)

If `i∗,t = 0, `i ,t = 1 for i 6= i∗, t > 1, a stochastic instance with
gap ∆ = 1, constant Hedge with ηt �

√
(logM)/T achieves

RT �
√
T logM .

Seemingly similar Hedge variants behave very differently on
stochastic instances!
Even if horizon T is known, anytime variant is preferable.



Some proof ideas

Divide time two phases [1, τ ] (dominated by noise) and [τ ,T ]
(weights concentrate fast to i∗), with τ � log M

∆2 .

Early phase: worst-case regret Rτ .
√
τ logM . log M

∆ .

At the beginning of late phase, i.e. t ≈ τ ≈ log M
∆2 , two things

occur simultaneously:
1 i∗ linearly dominates the other experts: for every i 6= i∗,

Li,t − Li∗,t & 1
2∆t. Hoeffding: it suffices that Me−t∆2

. 1.
2 Expert i∗ receives at least 1/2 of the weights: under previous

condition, it suffices that Me−∆
√
t log M . 1.

Condition (2) eliminates potentially linear dependence on M in
the bound. To control regret in the second phase, we then use
(1) and the fact that for c > 0,

∑
t>0 e

−c
√
t . 1

c2 .



The advantage of adaptive algorithms

Stochastic regime with gap ∆ often considered in the
literature to show the improvement of adaptive algorithms.
However, anytime Hedge achieves optimal O( log M

∆ ) regret in
this case. No need to tune ηt ?

(β,B)-Bernstein condition2 (β ∈ [0, 1],B > 0): for i 6= i∗,

E[(`i ,t − `i∗,t)2] 6 BE[`i ,t − `i∗,t ]β .

Proposition (Koolen, Grünwald & van Erven, 2016)

Algorithms with so-called “second-order regret bounds” (including
AdaHedge) achieve on (β,B)-Bernstein stochastic losses:

E[RT ] . (B logM)
1

2−βT
1−β
2−β + logM .

For β = 1, gives O(B logM) regret; we can have B � 1
∆ !

2Mammen & Tsybakov, 1999; Bartlett & Mendelson, 2006.
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The advantage of adaptive algorithms

(1,B)-Bernstein condition: E[(`i ,t − `i∗,t)2] 6 BE[`i ,t − `i∗,t ].
In this case, adaptive algorithms achieve O(B logM) regret.
We have B 6 1

∆ , but potentially B � 1
∆ (e.g., low noise).

Proposition

There exists a (1, 1)-Bernstein stochastic instance on which
anytime Hedge satisfies

E[RT ] &
√
T logM .

In fact, gap ∆ (essentially) characterizes anytime Hedge’s regret on
any stochastic instance: for T & 1/∆2,

E[RT ] &
1

(logM)2∆
.



Experiments
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Figure: Cumulative regret of Hedge algorithms on two stochastic
instances. (a) Stochastic instance with a gap, independent losses across
experts (M = 20,∆ = 0.1); (b) Bernstein instance with small ∆, but
small B (M = 10,∆ = 0.04,B = 4).



Conclusion and perspectives

Despite conservative learning rate (i.e., large penalization),
anytime Hedge achieves O( log M

∆ ) regret, adaptively in the
gap ∆, in the easy stochastic case.
Not the case with fixed-horizon ηt �

√
(logM)/T instead of

ηt �
√

(logM)/t.
Tuning the learning rate does help in some situations.
Result of a similar flavor in stochastic optimization3: SGD
with step size ηt � 1√

t
achieves O( 1

µT ) excess risk after
averaging on µ-strongly convex problems (adaptively in µ).
Not directly related, in fact “opposite” phenomenon.

3Moulines & Bach, 2011.



Thank you!


