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Hedge setting

Experts i = 1,..., M; can be thought of as sources of predictions.
Aim is to predict almost as well as the best expert in hindsight.

Hedge problem (= online linear optimization on the simplex)

At each time step t = 1,2, ...

@ Forecaster chooses probability distribution
on the experts;

@ Environment chooses loss vector £ = ({; +)1<i<m € [0, 1M,

© Forecaster incurs loss (= (v, £y) = Z,'\il Vitlit.

Goal: Control, for every loss vectors £; € [0,1]V, the regret
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Hedge algorithm and regret bound

First observation: Follow the Leader (FTL) / ERM, v, , =1
where iy € argmin; Zz;i ¢; s = no sublinear regret !

Indeed, let
(£1,17£2,1)7 (£1,27€272)7 (€1,37€273)7 = (1/27 O)a (O> 1)7 (17 0)7 s

Then, S/ (e, &) = T — L, but 27 6o, < T3, hence
Rr = T31 # o(T).



Hedge algorithm and regret bound

First observation: Follow the Leader (FTL) / ERM, v, =1
where iy € argmin; Eg;i ¢; s = no sublinear regret !

Hedge algorithm (Constant learning rate)
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where L; ; = Z;Zl Ui s, 1 learning rate.

Regret bound [Freund & Schapire 1997; Vovk, 1998]:
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for 7 = +/8(log M)/ T tuned knowing fixed time horizon T.
O(\/T log M) regret bound is minimax (worst-case) optimal.



Hedge algorithm and regret bound

Hedge algorithm (Time-varying learning rate)
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where L; ; = 22:1 Ui s, n: learning rate.

Regret bound: if 7); decreases,

T

logM 1
Rr < 22 1 23 0. < \/TlogM
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for n: = \/2(log M)/t, valid for every horizon T (anytime).
O(V/T log M) regret bound is minimax (worst-case) optimal.



Beyond worst case: adaptivity to easy stochastic instances

e Hedge with 7 < /(log M)/ T (constant) or 1, < \/(log M)/t
(anytime) achieve optimal worst case O(y/T log M) regret.

YE.g., van Erven et al., 2011; Gaillard et al., 2014; Luo & Schapire, 2015.



Beyond worst case: adaptivity to easy stochastic instances

e Hedge with 7 < /(log M)/ T (constant) or 1, < \/(log M)/t
(anytime) achieve optimal worst case O(y/T log M) regret.

@ However, worst-case is pessimistic and can lead to overly
conservative algorithms.

e “Easy”’ problem instance: stochastic case. If the loss vectors
£1,4s,... areiid. (e.g., {i+ = L(fi(Xt), Y:)), FTL/ERM
achieves constant O(log M) regret = fast rate.

YE.g., van Erven et al., 2011; Gaillard et al., 2014; Luo & Schapire, 2015.



Beyond worst case: adaptivity to easy stochastic instances

e Hedge with 7 < /(log M)/ T (constant) or 1, < \/(log M)/t
(anytime) achieve optimal worst case O(y/T log M) regret.

@ However, worst-case is pessimistic and can lead to overly
conservative algorithms.

e “Easy”’ problem instance: stochastic case. If the loss vectors
£1,4s,... areiid. (e.g., {i+ = L(fi(Xt), Y:)), FTL/ERM
achieves constant O(log M) regret = fast rate.

@ Recent line of work!: algorithms that combine worst-case
O(+/T log M) regret with faster rate on “easier” instances.

e Example: AdaHedge algorithm [van Erven et al., 2011,2015].
Data-dependent learning rate 7).

o Worst-case: "safe” n; < /(log M)/t, O(\/T log M) regret;

e Stochastic case: 1; < cst (= FTL), O(log M) regret.

'E.g., van Erven et al., 2011; Gaillard et al., 2014; Luo & Schapire, 2015.



Optimality of anytime Hedge in the stochastic regime

Our result: anytime Hedge with “conservative” 7, < /(log M)/t is
actually optimal in the easy stochastic regime!

@ Stochastic instance: i.i.d. loss vectors £1,£5, ... such that
E[¢; ¢ — L« ¢] = A for i # i* (where i* = argmin; E[{; ;]).

Proposition (M., Gaiffas, 2018)

On any stochastic instance with , anytime
Hedge with 1n; < \/(log M)/t achieves, for every T > 1:

log M

E[RT] < .
[RT] S A

Remark: % regret is optimal under the gap assumption.



Anytime Hedge vs. Fixed horizon Hedge

Theorem (M., Gaiffas, 2018)

On any stochastic instance with , anytime
Hedge with 1; < /(log M)/t achieves, for every T > 1:

log M
E[RT] < .
[RT]S —4

Proposition (M., Gaiffas, 2018)

If i« + =0, lis =1 fori % i*, t > 1, a stochastic instance with
, constant Hedge with 1, < \/(log M)/ T achieves

Rr <+/TlogM.

@ Seemingly similar Hedge variants behave very differently on
stochastic instances!

@ Even if horizon T is known, anytime variant is preferable.



Some proof ideas

e Divide time two phases [1, 7] (dominated by noise) and [, T]

(weights concentrate fast to i*), with 7 < '°§2’V’

log M
e Early phase: worst-case regret R, < +/7logM < 252

o At the beginning of late phase, je. t & 7~ '°§£/’, two things

occur simultaneously:

@ /* linearly dommates the other experts: for every i £ j*
Lit—Liw: > 2At Hoeffding: it suffices that Me—tA” < 1.

Q Expert i* receives at least 1/2 of the weights: under previous
condition, it suffices that Me=AVtleM < 1.

e Condition (2) eliminates potentially linear dependence on M in
the bound. To control regret in the second phase, we then use
(1) and the fact that for ¢ >0, 3,9 e Vi < ?12



The advantage of adaptive algorithms

@ Stochastic regime with often considered in the
literature to show the improvement of adaptive algorithms.

o However, anytime Hedge achieves optimal O(*6M) regret in
this case. No need to tune 7; ?

2Mammen & Tsybakov, 1999; Bartlett & Mendelson, 2006.



The advantage of adaptive algorithms

@ Stochastic regime with often considered in the
literature to show the improvement of adaptive algorithms.

o However, anytime Hedge achieves optimal O(*6M) regret in
this case. No need to tune 7; ?

e (3, B)-Bernstein condition? (3 € [0,1], B > 0): for i # i*,

E[(£ic — lie)?] < BE[lie — L]

Proposition (Koolen, Griinwald & van Erven, 2016)

Algorithms with so-called “second-order regret bounds” (including
AdaHedge) achieve on (3, B)-Bernstein stochastic losses:

1-8
E[Rr] < (B log M)Z7 T2 + log M.

For 8 =1, gives O(5 log M) regret; we can have

2Mammen & Tsybakov, 1999; Bartlett & Mendelson, 2006.



The advantage of adaptive algorithms

o (1, B)-Bernstein condition: E[(¢; ¢ — £+ +)?] < BE[l; ¢ — lix 4.
@ In this case, adaptive algorithms achieve O(E log M) regret.
o We have , but potentially (e.g., low noise).

Proposition
There exists a (1,1)-Bernstein stochastic instance on which
anytime Hedge satisfies

E[R7] > /T log M.

In fact, (essentially) characterizes anytime Hedge's regret on
any stochastic instance: for T > 1/A2,

1
IE[RT] Z (Iog M)2
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Figure: Cumulative regret of Hedge algorithms on two stochastic
instances. (a) Stochastic instance with a gap, independent losses across
experts (M =20, A = 0.1); (b) Bernstein instance with small A, but
small B (M =10,A =0.04,B = 4).



Conclusion and perspectives

@ Despite conservative learning rate (i.e., large penalization),

anytime Hedge achieves O('OgAM) regret, adaptively in the

gap A, in the easy stochastic case.

@ Not the case with fixed-horizon n; < \/(log M)/ T instead of
ne </ (log M) /t.

@ Tuning the learning rate does help in some situations.

@ Result of a similar flavor in stochastic optimization3: SGD
with step size n; < % achieves O(Hi.,-) excess risk after

averaging on p-strongly convex problems (adaptively in ).
Not directly related, in fact “opposite” phenomenon.

3Moulines & Bach, 2011.



Thank you!



