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Setting



Statistical learning (regression)

• Prediction problem: predict y ∈ R based on covariates x ∈ Rd

• Random pair (X ,Y ) ∼ P on Rd × R, distribution P unknown

• Risk R(f ) = E[(f (X )− Y )2] of prediction function f : Rd → R

• Flin = {x 7→ 〈w , x〉 : w ∈ Rd} class of linear functions
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Statistical learning (regression)

• Prediction problem: predict y ∈ R based on covariates x ∈ Rd

• Random pair (X ,Y ) ∼ P on Rd × R, distribution P unknown

• Risk R(f ) = E[(f (X )− Y )2] of prediction function f : Rd → R

• Flin = {x 7→ 〈w , x〉 : w ∈ Rd} class of linear functions

Remark: Case of the linear span

F = span(φ1, . . . , φd) =

{ d∑
j=1

λjφj : λ1, . . . , λd ∈ R

}
of a finite dictionary of functions φ1, . . . , φd : Z → R reduces to it,

through change of variables x = (φ1(z), . . . , φd(z)) ∈ Rd
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Statistical learning (regression)

• Prediction problem: predict y ∈ R based on covariates x ∈ Rd

• Random pair (X ,Y ) ∼ P on Rd × R, distribution P unknown

• Risk R(f ) = E[(f (X )− Y )2] of prediction function f : Rd → R

• Flin = {x 7→ 〈w , x〉 : w ∈ Rd} class of linear functions

• Given (X1,Y1), . . . , (Xn,Yn) ∈ Rd ×R i.i.d. sample from P, find

function f̂ : Rd → R whose excess risk

E(f̂ ) = R(f̂ )− inf
f ∈Flin

R(f )

is small with high probability. I.e., prediction error R(f̂ ) of f̂ is

almost as small as that of the best linear function.
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Some basic facts

Let fw : x 7→ 〈w , x〉, and Flin = {fw : w ∈ Rd}.

Assuming EY 2 <∞, E‖X‖2 <∞, the risk minimizer is fw∗ , with

w∗ = Σ−1E[YX ], where Σ = EXXT.

Excess risk of a linear function fw is

E(fw ) = R(fw )− R(fw∗) = E(fw (X )− fw∗(X ))2

= ‖fw − fw∗‖2
L2(PX ) = ‖Σ1/2(w − w∗)‖2.

Note that w∗,Σ are unknown since P is.
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Least squares estimator

Population risk is R(f ) = E(f (X )− Y )2. Define empirical risk by

R̂n(f ) =
1

n

n∑
i=1

(f (Xi )− Yi )
2

Minimized in Flin by least squares/emp. risk minimizer f̂erm:

f̂erm = argmin
f ∈Flin

R̂n(f ) = fŵerm
, where ŵerm = Σ̂−1

n ·
1

n

n∑
i=1

YiXi ,

with Σ̂n :=
1

n

n∑
i=1

XiX
T
i the empirical covariance matrix
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Overview of existing results



Performance of the least squares estimator

w∗ = argminw∈Rd R(fw ) best parameter, error ξ = Y − 〈w∗,X 〉

Excess risk of the least squares estimator f̂erm is

R(f̂erm)− R(fw∗) =
∥∥∥Σ1/2Σ̂−1

n Σ1/2 · 1

n

n∑
i=1

ξiΣ
−1/2Xi

∥∥∥2

6 λmin(Σ−1/2Σ̂nΣ−1/2)−2︸ ︷︷ ︸
matrix fluctuations/random design

·
∥∥∥ 1

n

n∑
i=1

ξiΣ
−1/2Xi︸ ︷︷ ︸

”noise”

∥∥∥2
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Analysis of least squares under boundedness or light tails

Boundedness assumption: ‖Σ−1/2X‖ 6 C
√
d a.s.

Or sub-Gaussian tail: P(|〈w ,X 〉| > t‖w‖Σ) 6 2 exp(−t2/κ2)

These strong/restrictive assumptions on X imply (two-sided)

matrix concentration: 1
2 Σ 4 Σ̂n 4 2Σ for n & d .

If, in addition, errors are well-behaved (sub-Gaussian), then least

squares achieves the (optimal) bound

R(f̂erm)− inf
f ∈Flin

R(f ) .
d

n
.

Intuition: empirical risk is close to population risk over Flin

Some references: Caponnetto, De Vito, 2007; Catoni, 2004; Hsu et al., 2014
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Analysis of least squares under weaker assumptions

Weakened assumptions: finite moment equivalence for X :

∀w ∈ Rd ,
(
E〈w ,X 〉4

)1/4
6 κ

(
E〈w ,X 〉2

)1/2

(Oliveira, 2016). Related “small-ball” assumption (Koltchinskii &

Mendelson, 2015; Lecué & Mendelson, 2016, M., 2019). Weaker

assumption on X implies (one-sided) lower isometry Σ̂ < 1
2 Σ.

If error is also light-tailed, this suffices to show that least squares

achieves O(d/n) excess risk.

Intuition: functions with large excess risk have large empirical risk.
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Procedures robust to heavy tails

Same assumptions on X as before (moment equivalence), e.g.,

∀w ∈ Rd ,
(
E〈w ,X 〉4

)1/4
6 κ

(
E〈w ,X 〉2

)1/2
.

But, in addition, error ξ = Y − 〈w∗,X 〉 can be “heavy-tailed” too.

Here, least squares f̂erm is suboptimal, but some robust

estimators do achieve the O(d/n) bound. (Audibert & Catoni 2010,

Lugosi & Mendelson 2019, Catoni 2016)

Weaker assumption on X , though still non-trivial restriction. In

some simple cases, κ depends on d , leading to suboptimal bounds.

Can we remove any assumption on the distribution of X?
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Distribution-free setting



“Distribution-free” setting

Joint distribution P = P(X ,Y ) of (X ,Y ) is characterized by:

• Distribution PX of X , probability distribution on Rd

• Conditional distribution PY |X = (PY |X=x)x∈Rd (family of

distributions on R indexed by x ∈ Rd).

Remark: Risk R(f ) is minimized (among all functions) by the

regression function

freg(x) = E[Y |X = x ] .

A guarantee is distribution-free if it holds for all distributions PX .

1. Is it possible to obtain distribution-free guarantees?

2. If so, what are the minimal conditions on PY |X ?
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Minimal assumption on the conditional distribution

Main Assumption (on PY |X )

There exists a constant m > 0 such that

sup
x∈Rd

E[Y 2|X = x ] 6 m2.

This condition holds if Y is bounded: |Y | 6 m a.s.

But much weaker: compatible with heavy tails of Y , only

(conditional) second moment bound.

For instance, one can have EY 2+ε = +∞ for any ε > 0. (Take

Y = Y ′ + ξ with |Y ′| 6 m/
√

2 and ξ independent of X with

Eξ2 6 m2/2 and Eξ2+ε = +∞ for ε > 0).

Minimal assumption to obtain PX -free guarantees (see later)
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Limitations of proper estimators

A procedure f̂n is called proper (or: linear) if it always returns a

linear function f̂n ∈ Flin.

Remark: includes least squares f̂erm, but also most procedures in

the literature (including in robust regression).

Proposition (Shamir, 2015)

For all n, d > 1 and any proper procedure f̂n, there exists a

distribution P with |Y | 6 1 such that

ER(f̂n)− inf
f ∈Flin

R(f ) & 1.

(Upper bound of 1 trivially achieved by zero function f̂n ≡ 0.)

No nontrivial distribution-free guarantee for proper procedures
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Classical bound for truncated least squares

Truncated least squares: thresholds predictions to [−m,m]

f̂trunc(x) = max(−m,min(m, 〈ŵerm, x〉)).

Improper/nonlinear (due to truncation).

Theorem (Györfi et. al, 2002)

If E[Y 2|X ] 6 m2, then truncated least squares satisfies:

ER(f̂trunc)− inf
f ∈Flin

R(f ) 6 c
m2d log n

n
+ 7
(

inf
f ∈Flin

R(f )− R(freg)
)

Distribution-free result (no assumption on PX !)

Approximation term 7(inff ∈Flin
R(f )− R(freg))
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Main results



Improved bound in expectation for truncated least squares

Truncated least squares: f̂trunc(x) = max(−m,min(m, 〈ŵerm, x〉))

Theorem (M., Vaškevičius, Zhivotovskiy, 2021)

If E[Y 2|X ] 6 m2, then truncated least squares satisfies:

ER(f̂trunc)− inf
f ∈Flin

R(f ) 6
8m2d

n + 1
.

Distribution-free guarantee (as before), O(d/n) rate.

Removes approximation term 7(inff ∈Flin
R(f )− R(freg)) from

previous bound (and extra log n; gives explicit constant c = 8).

Simpler proof (leave-one-out argument)!

Similar bound for another procedure (Forster & Warmuth, 2002)
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In-expectation vs. high-probability guarantees

Previous results (for e.g. truncated least squares) in expectation:

ER(f̂n)− inf
f ∈Flin

R(f ) .
m2d

n
.

What about high-probability guarantees? Given confidence

parameter δ, bound of the form

P
(
R(f̂n)− inf

f ∈Flin

R(f ) > ε(n, d , δ)
)
6 δ.

Under assumption E[Y 2|X ] 6 m2, ideal accuracy (see later):

ε(n, d , δ) �
m2
(
d + log(1/δ)

)
n

.

(“Exponential” bound)
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Truncated least squares fails with constant probability

Truncated least squares: f̂trunc(x) = max(−m,min(m, 〈ŵerm, x〉)),

with in-expectation bound ER(f̂trunc)− inff ∈Flin
R(f ) . m2d/n.

Theorem (M., Vaškevičius, Zhivotovskiy, 2021)

For any n, d > 1, there exists a distribution P of (X ,Y ) with

|Y | 6 m such that (same lower bound for Forster-Warmuth)

P
(
R(f̂trunc)− inf

f ∈Flin

R(f ) > c m2
)
> c .

With constant probability, f̂trunc has trivial/constant excess risk.

Contradiction (?) with m2d/n bound in expectation? No, since

R(f̂trunc)− inff ∈Flin
R(f ) can take negative values as f̂trunc is

improper/nonlinear (compensates in expectation).
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Natural remaining question

Simple (nonlinear) truncated least squares f̂trunc satisfies optimal

distribution-free expected excess risk of m2d/n

But at the same time, fails with constant probability: m2 risk

Is there a (necessarily improper/nonlinear) procedure f̂n achieving

ideal high-probability bound of

R(f̂n)− inf
f ∈Flin

R(f ) .
m2
(
d + log(1/δ)

)
n

with probability 1− δ?
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Deviation-optimal estimator

Theorem (M., Vaškevičius, Zhivotovskiy, 2021)

For every n, d > 1, m > 0 and δ > 1, there exists a procedure f̂n

(depending on δ and m) such that, for any distribution satisfying

E[Y 2|X ] 6 m2, with probability 1− δ,

R(f̂n)− inf
f ∈Flin

R(f ) .
m2
(
d + log(1/δ)

)
n

.

Deviation-optimal procedure, distribution-free w.r.t. PX and

only E[Y 2|X ] 6 m2 (robustness to heavy tails).

Depends on confidence δ (unavoidable).

Explicit, though involved, procedure. Computationally expensive
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Some ideas behind the procedure

Two sources of difficulty: no assumption on X , and possibly

heavy-tailed Y .

• First step: truncate linear functions to m, class Ftrunc. Only

reduces risk, gives bounded functions, but non-convex class!

• Second step: form some random/empirical finite discretization

of the class Ftrunc. Needed for technical reasons (heavy tails).

• Third step: use ideas from model aggregation theory (Star-type

algorithm, Audibert 2008) to handle non-convexity of the class.

• Fourth step: Extend above from bounded to heavy-tailed setting

through robust mean estimators and min-max procedures.

Note: the resulting procedure is not practical for large d!
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Conclusion

Distribution-free linear regression, no restriction on PX ;

assumption (on Y |X ) E[Y 2|X ] 6 m2 minimal (not shown here)

No proper/linear procedure (least squares or robust alternatives)

gives any useful bound in this distribution-free setting

Truncated least squares achieves m2d/n excess risk in

expectation (improving ’classical’ bound). . . but fails (m2 risk) with

constant probability.

Robust procedure optimal with high probability (extends to

nonlinear VC-subgraph classes).

Future directions: Practical procedure? Adapting to m?
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Thank you!
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