Distribution-free robust linear regression

Jaouad Mourtada (CREST, ENSAE)

Joint work with:

Tomas Vaškevičius (University of Oxford) and Nikita Zhivotovskiy (ETH Zürich)

Séminaire MIA Paris March 1st, 2021

Setting

Overview of existing results

Distribution-free setting

Main results

Setting

- **Prediction** problem: predict $y \in \mathbf{R}$ based on covariates $x \in \mathbf{R}^d$
- Random pair $(X, Y) \sim P$ on $\mathbf{R}^d \times \mathbf{R}$, distribution P unknown

- **Prediction** problem: predict $y \in \mathbf{R}$ based on covariates $x \in \mathbf{R}^d$
- Random pair $(X, Y) \sim P$ on $\mathbf{R}^d \times \mathbf{R}$, distribution P unknown
- Risk $R(f) = \mathbf{E}[(f(X) Y)^2]$ of prediction function $f : \mathbf{R}^d \to \mathbf{R}$

- **Prediction** problem: predict $y \in \mathbf{R}$ based on covariates $x \in \mathbf{R}^d$
- Random pair $(X, Y) \sim P$ on $\mathbf{R}^d \times \mathbf{R}$, distribution P unknown
- Risk $R(f) = \mathbf{E}[(f(X) Y)^2]$ of prediction function $f : \mathbf{R}^d \to \mathbf{R}$
- $\mathcal{F}_{\text{lin}} = \{ x \mapsto \langle w, x \rangle : w \in \mathbf{R}^d \}$ class of linear functions

Statistical learning (regression)

- **Prediction** problem: predict $y \in \mathbf{R}$ based on covariates $x \in \mathbf{R}^d$
- Random pair $(X, Y) \sim P$ on $\mathbf{R}^d \times \mathbf{R}$, distribution P unknown
- Risk $R(f) = \mathbf{E}[(f(X) Y)^2]$ of prediction function $f : \mathbf{R}^d \to \mathbf{R}$
- $\mathcal{F}_{lin} = \{x \mapsto \langle w, x \rangle : w \in \mathbf{R}^d\}$ class of linear functions

Remark: Case of the linear span

$$\mathcal{F} = \operatorname{span}(\phi_1, \dots, \phi_d) = \left\{ \sum_{j=1}^d \lambda_j \phi_j : \lambda_1, \dots, \lambda_d \in \mathbf{R} \right\}$$

of a finite dictionary of functions $\phi_1, \ldots, \phi_d : \mathbb{Z} \to \mathbb{R}$ reduces to it, through change of variables $x = (\phi_1(z), \ldots, \phi_d(z)) \in \mathbb{R}^d$

Statistical learning (regression)

- **Prediction** problem: predict $y \in \mathbf{R}$ based on covariates $x \in \mathbf{R}^d$
- Random pair $(X, Y) \sim P$ on $\mathbf{R}^d \times \mathbf{R}$, distribution P unknown
- Risk $R(f) = \mathbf{E}[(f(X) Y)^2]$ of prediction function $f : \mathbf{R}^d \to \mathbf{R}$
- $\mathcal{F}_{\mathsf{lin}} = \{ x \mapsto \langle w, x \rangle : w \in \mathbf{R}^d \}$ class of linear functions
- Given (X₁, Y₁),..., (X_n, Y_n) ∈ R^d × R i.i.d. sample from P, find function f̂ : R^d → R whose excess risk

$$\mathcal{E}(\widehat{f}) = R(\widehat{f}) - \inf_{f \in \mathcal{F}_{\mathsf{lin}}} R(f)$$

is **small** with high probability. *I.e.*, prediction error $R(\hat{f})$ of \hat{f} is almost as small as that of the best linear function.

Let $f_w : x \mapsto \langle w, x \rangle$, and $\mathcal{F}_{\text{lin}} = \{f_w : w \in \mathbf{R}^d\}$.

Assuming $\mathbf{E}Y^2 < \infty$, $\mathbf{E}||X||^2 < \infty$, the risk minimizer is f_{w^*} , with

 $w^* = \Sigma^{-1} \mathbf{E}[YX], \text{ where } \Sigma = \mathbf{E}XX^{\mathsf{T}}.$

Let $f_w : x \mapsto \langle w, x \rangle$, and $\mathcal{F}_{\text{lin}} = \{f_w : w \in \mathbf{R}^d\}$.

Assuming $\mathbf{E}Y^2 < \infty$, $\mathbf{E} ||X||^2 < \infty$, the risk minimizer is f_{w^*} , with

$$w^* = \Sigma^{-1} \mathbf{E}[YX], \text{ where } \Sigma = \mathbf{E}XX^{\mathsf{T}}.$$

Excess risk of a linear function f_w is

$$\mathcal{E}(f_w) = R(f_w) - R(f_{w^*}) = \mathbf{E}(f_w(X) - f_{w^*}(X))^2$$

= $\|f_w - f_{w^*}\|_{L_2(P_X)}^2 = \|\Sigma^{1/2}(w - w^*)\|^2.$

Let $f_w : x \mapsto \langle w, x \rangle$, and $\mathcal{F}_{\text{lin}} = \{f_w : w \in \mathbf{R}^d\}$.

Assuming $\mathbf{E}Y^2 < \infty$, $\mathbf{E} ||X||^2 < \infty$, the risk minimizer is f_{w^*} , with

$$w^* = \Sigma^{-1} \mathbf{E}[YX], \text{ where } \Sigma = \mathbf{E}XX^{\mathsf{T}}.$$

Excess risk of a linear function f_w is

$$\mathcal{E}(f_w) = R(f_w) - R(f_{w^*}) = \mathbf{E}(f_w(X) - f_{w^*}(X))^2$$

= $\|f_w - f_{w^*}\|_{L_2(P_X)}^2 = \|\Sigma^{1/2}(w - w^*)\|^2.$

Note that w^* , Σ are unknown since P is.

Population risk is $R(f) = \mathbf{E}(f(X) - Y)^2$. Define empirical risk by

$$\widehat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$

Population risk is $R(f) = \mathbf{E}(f(X) - Y)^2$. Define empirical risk by

$$\widehat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$

Minimized in \mathcal{F}_{lin} by least squares/emp. risk minimizer \hat{f}_{erm} :

$$\widehat{f}_{\text{erm}} = \operatorname*{argmin}_{f \in \mathcal{F}_{\text{lin}}} \widehat{R}_n(f) = f_{\widehat{w}_{\text{erm}}}, \quad \text{where} \quad \widehat{w}_{\text{erm}} = \widehat{\Sigma}_n^{-1} \cdot \frac{1}{n} \sum_{i=1}^n Y_i X_i,$$

with $\widehat{\Sigma}_n := \frac{1}{n} \sum_{i=1}^n X_i X_i^{\mathsf{T}}$ the empirical covariance matrix

Overview of existing results

 $w^* = \operatorname{argmin}_{w \in \mathbf{R}^d} R(f_w)$ best parameter, error $\xi = Y - \langle w^*, X \rangle$

 $w^* = \operatorname{argmin}_{w \in \mathbb{R}^d} R(f_w)$ best parameter, error $\xi = Y - \langle w^*, X \rangle$ Excess risk of the least squares estimator \widehat{f}_{erm} is

$$R(\widehat{f}_{erm}) - R(f_{w^*}) = \left\| \Sigma^{1/2} \widehat{\Sigma}_n^{-1} \Sigma^{1/2} \cdot \frac{1}{n} \sum_{i=1}^n \xi_i \Sigma^{-1/2} X_i \right\|^2$$
$$\leqslant \underbrace{\lambda_{\min}(\Sigma^{-1/2} \widehat{\Sigma}_n \Sigma^{-1/2})^{-2}}_{\text{matrix fluctuations/random design}} \cdot \left\| \underbrace{\frac{1}{n} \sum_{i=1}^n \xi_i \Sigma^{-1/2} X_i}_{"noise"} \right\|^2$$

Or sub-Gaussian tail: $\mathbf{P}(|\langle w, X \rangle| \ge t ||w||_{\Sigma}) \le 2 \exp(-t^2/\kappa^2)$

Or sub-Gaussian tail: $\mathbf{P}(|\langle w, X \rangle| \ge t \|w\|_{\Sigma}) \le 2 \exp(-t^2/\kappa^2)$

These **strong/restrictive** assumptions on *X* imply (two-sided) **matrix concentration**: $\frac{1}{2}\Sigma \preccurlyeq \widehat{\Sigma}_n \preccurlyeq 2\Sigma$ for $n \gtrsim d$.

Or sub-Gaussian tail: $\mathbf{P}(|\langle w, X \rangle| \ge t ||w||_{\Sigma}) \le 2 \exp(-t^2/\kappa^2)$

These **strong/restrictive** assumptions on *X* imply (two-sided) **matrix concentration**: $\frac{1}{2}\Sigma \preccurlyeq \widehat{\Sigma}_n \preccurlyeq 2\Sigma$ for $n \gtrsim d$.

If, in addition, errors are well-behaved (sub-Gaussian), then least squares achieves the (optimal) bound

$$R(\widehat{f}_{\mathsf{erm}}) - \inf_{f \in \mathcal{F}_{\mathsf{lin}}} R(f) \lesssim \frac{d}{n}.$$

Or sub-Gaussian tail: $\mathbf{P}(|\langle w, X \rangle| \ge t ||w||_{\Sigma}) \le 2 \exp(-t^2/\kappa^2)$

These **strong/restrictive** assumptions on *X* imply (two-sided) **matrix concentration**: $\frac{1}{2}\Sigma \preccurlyeq \widehat{\Sigma}_n \preccurlyeq 2\Sigma$ for $n \gtrsim d$.

If, in addition, errors are well-behaved (sub-Gaussian), then least squares achieves the (optimal) bound

$$R(\widehat{f}_{\mathsf{erm}}) - \inf_{f \in \mathcal{F}_{\mathsf{lin}}} R(f) \lesssim \frac{d}{n}.$$

Intuition: empirical risk is close to population risk over \mathcal{F}_{lin}

Some references: Caponnetto, De Vito, 2007; Catoni, 2004; Hsu et al., 2014

Weakened assumptions: finite moment equivalence for X:

$$\forall w \in \mathbf{R}^d, \quad \left(\mathbf{E}\langle w, X \rangle^4\right)^{1/4} \leqslant \kappa \left(\mathbf{E}\langle w, X \rangle^2\right)^{1/2}$$

(Oliveira, 2016). Related "small-ball" assumption (Koltchinskii & Mendelson, 2015; Lecué & Mendelson, 2016, M., 2019). Weaker assumption on X implies (one-sided) lower isometry $\hat{\Sigma} \succeq \frac{1}{2}\Sigma$.

Weakened assumptions: finite moment equivalence for X:

$$\forall w \in \mathbf{R}^{d}, \quad \left(\mathbf{E}\langle w, X \rangle^{4}\right)^{1/4} \leqslant \kappa \left(\mathbf{E}\langle w, X \rangle^{2}\right)^{1/2}$$

(Oliveira, 2016). Related "small-ball" assumption (Koltchinskii & Mendelson, 2015; Lecué & Mendelson, 2016, M., 2019). Weaker assumption on X implies (one-sided) lower isometry $\hat{\Sigma} \succeq \frac{1}{2}\Sigma$.

If error is also light-tailed, this suffices to show that least squares achieves O(d/n) excess risk.

Weakened assumptions: finite moment equivalence for X:

$$\forall w \in \mathbf{R}^{d}, \quad \left(\mathbf{E}\langle w, X \rangle^{4}\right)^{1/4} \leqslant \kappa \left(\mathbf{E}\langle w, X \rangle^{2}\right)^{1/2}$$

(Oliveira, 2016). Related "small-ball" assumption (Koltchinskii & Mendelson, 2015; Lecué & Mendelson, 2016, M., 2019). Weaker assumption on X implies (one-sided) lower isometry $\hat{\Sigma} \succeq \frac{1}{2}\Sigma$.

If error is also light-tailed, this suffices to show that least squares achieves O(d/n) excess risk.

Intuition: functions with large excess risk have large empirical risk.

$$orall w \in \mathbf{R}^d, \quad ig(\mathbf{E}\langle w,X
angle^4ig)^{1/4} \leqslant \kappaig(\mathbf{E}\langle w,X
angle^2ig)^{1/2}.$$

But, in addition, error $\xi = Y - \langle w^*, X \rangle$ can be "heavy-tailed" too.

$$orall w \in \mathbf{R}^d, \quad \left(\mathbf{E}\langle w, X
angle^4
ight)^{1/4} \leqslant \kappa \left(\mathbf{E}\langle w, X
angle^2
ight)^{1/2}.$$

But, in addition, error $\xi = Y - \langle w^*, X \rangle$ can be "heavy-tailed" too. Here, least squares \hat{f}_{erm} is **suboptimal**, but some **robust estimators** do achieve the O(d/n) bound. (Audibert & Catoni 2010, Lugosi & Mendelson 2019, Catoni 2016)

$$orall w \in \mathbf{R}^d, \quad ig(\mathbf{E}\langle w,X
angle^4ig)^{1/4} \leqslant \kappaig(\mathbf{E}\langle w,X
angle^2ig)^{1/2}.$$

But, in addition, error $\xi = Y - \langle w^*, X \rangle$ can be "heavy-tailed" too. Here, least squares \hat{f}_{erm} is **suboptimal**, but some **robust estimators** do achieve the O(d/n) bound. (Audibert & Catoni 2010, Lugosi & Mendelson 2019, Catoni 2016)

Weaker assumption on X, though still **non-trivial** restriction. In some simple cases, κ depends on d, leading to suboptimal bounds.

$$orall w \in \mathbf{R}^d, \quad ig(\mathbf{E}\langle w,X
angle^4ig)^{1/4} \leqslant \kappaig(\mathbf{E}\langle w,X
angle^2ig)^{1/2}.$$

But, in addition, error $\xi = Y - \langle w^*, X \rangle$ can be "heavy-tailed" too. Here, least squares \hat{f}_{erm} is **suboptimal**, but some **robust estimators** do achieve the O(d/n) bound. (Audibert & Catoni 2010, Lugosi & Mendelson 2019, Catoni 2016)

Weaker assumption on X, though still **non-trivial** restriction. In some simple cases, κ depends on d, leading to suboptimal bounds.

Can we **remove any assumption** on the distribution of X?

Joint distribution $P = P_{(X,Y)}$ of (X, Y) is characterized by:

• Distribution P_X of X, probability distribution on \mathbf{R}^d

Joint distribution $P = P_{(X,Y)}$ of (X, Y) is characterized by:

- Distribution P_X of X, probability distribution on \mathbf{R}^d
- Conditional distribution P_{Y|X} = (P_{Y|X=x})_{x∈R^d} (family of distributions on R indexed by x ∈ R^d).
 <u>Remark</u>: Risk R(f) is minimized (among all functions) by the regression function

$$f_{\rm reg}(x) = \mathbf{E}[Y|X=x].$$

Joint distribution $P = P_{(X,Y)}$ of (X, Y) is characterized by:

- Distribution P_X of X, probability distribution on \mathbf{R}^d
- Conditional distribution P_{Y|X} = (P_{Y|X=x})_{x∈R^d} (family of distributions on R indexed by x ∈ R^d).
 <u>Remark</u>: Risk R(f) is minimized (among all functions) by the regression function

$$f_{\rm reg}(x) = \mathbf{E}[Y|X=x].$$

A guarantee is **distribution-free** if it holds for all distributions P_X .

Joint distribution $P = P_{(X,Y)}$ of (X, Y) is characterized by:

- Distribution P_X of X, probability distribution on \mathbf{R}^d
- Conditional distribution P_{Y|X} = (P_{Y|X=x})_{x∈R^d} (family of distributions on **R** indexed by x ∈ **R**^d).
 <u>Remark</u>: Risk R(f) is minimized (among all functions) by the regression function

$$f_{\rm reg}(x) = \mathbf{E}[Y|X=x].$$

A guarantee is **distribution-free** if it holds for all distributions P_X .

- 1. Is it possible to obtain distribution-free guarantees?
- 2. If so, what are the **minimal conditions** on $P_{Y|X}$?

Main Assumption (on $P_{Y|X}$)

There exists a constant m > 0 such that

$$\sup_{x\in\mathbf{R}^d}\mathbf{E}[Y^2|X=x]\leqslant m^2.$$

Main Assumption (on $P_{Y|X}$)

There exists a constant m > 0 such that

$$\sup_{\mathbf{X}\in\mathbf{R}^d}\mathbf{E}[Y^2|X=x]\leqslant m^2.$$

This condition holds if Y is **bounded**: $|Y| \leq m$ a.s.

Main Assumption (on $P_{Y|X}$)

There exists a constant m > 0 such that

$$\sup_{\mathbf{x}\in\mathbf{R}^d}\mathbf{E}[Y^2|X=x]\leqslant m^2.$$

This condition holds if Y is **bounded**: $|Y| \leq m$ a.s.

But **much weaker**: compatible with heavy tails of *Y*, only **(conditional) second moment** bound.

Main Assumption (on $P_{Y|X}$)

There exists a constant m > 0 such that

$$\sup_{x\in\mathbf{R}^d}\mathbf{E}[Y^2|X=x]\leqslant m^2.$$

This condition holds if Y is **bounded**: $|Y| \leq m$ a.s.

But **much weaker**: compatible with heavy tails of *Y*, only **(conditional) second moment** bound.

For instance, one can have $\mathbf{E}Y^{2+\varepsilon} = +\infty$ for any $\varepsilon > 0$. (Take $Y = Y' + \xi$ with $|Y'| \leq m/\sqrt{2}$ and ξ independent of X with $\mathbf{E}\xi^2 \leq m^2/2$ and $\mathbf{E}\xi^{2+\varepsilon} = +\infty$ for $\varepsilon > 0$).

Minimal assumption on the conditional distribution

Main Assumption (on $P_{Y|X}$)

There exists a constant m > 0 such that

$$\sup_{x\in\mathbf{R}^d}\mathbf{E}[Y^2|X=x]\leqslant m^2.$$

This condition holds if Y is **bounded**: $|Y| \leq m$ a.s.

But **much weaker**: compatible with heavy tails of *Y*, only **(conditional) second moment** bound.

For instance, one can have $\mathbf{E}Y^{2+\varepsilon} = +\infty$ for any $\varepsilon > 0$. (Take $Y = Y' + \xi$ with $|Y'| \leq m/\sqrt{2}$ and ξ independent of X with $\mathbf{E}\xi^2 \leq m^2/2$ and $\mathbf{E}\xi^{2+\varepsilon} = +\infty$ for $\varepsilon > 0$).

Minimal assumption to obtain P_X -free guarantees (see later)

A procedure \widehat{f}_n is called **proper** (or: **linear**) if it always returns a linear function $\widehat{f}_n \in \mathcal{F}_{\text{lin}}$.

A procedure \hat{f}_n is called **proper** (or: **linear**) if it always returns a linear function $\hat{f}_n \in \mathcal{F}_{\text{lin}}$.

<u>Remark</u>: includes least squares \hat{f}_{erm} , but also most procedures in the literature (including in robust regression).

A procedure \hat{f}_n is called **proper** (or: **linear**) if it always returns a linear function $\hat{f}_n \in \mathcal{F}_{\text{lin}}$.

<u>Remark</u>: includes least squares \hat{f}_{erm} , but also most procedures in the literature (including in robust regression).

Proposition (Shamir, 2015)

For all $n, d \ge 1$ and any proper procedure \hat{f}_n , there exists a distribution P with $|Y| \le 1$ such that

$$\mathbf{E}R(\widehat{f}_n) - \inf_{f\in\mathcal{F}_{\mathrm{lin}}} R(f) \gtrsim 1.$$

(Upper bound of 1 trivially achieved by zero function $\hat{f}_n \equiv 0$.)

A procedure \hat{f}_n is called **proper** (or: **linear**) if it always returns a linear function $\hat{f}_n \in \mathcal{F}_{\text{lin}}$.

<u>Remark</u>: includes least squares \hat{f}_{erm} , but also most procedures in the literature (including in robust regression).

Proposition (Shamir, 2015)

For all $n, d \ge 1$ and any proper procedure \hat{f}_n , there exists a distribution P with $|Y| \le 1$ such that

$$\mathbf{E}R(\widehat{f}_n) - \inf_{f\in\mathcal{F}_{\mathrm{lin}}} R(f) \gtrsim 1.$$

(Upper bound of 1 trivially achieved by zero function $\hat{f}_n \equiv 0$.)

No nontrivial distribution-free guarantee for proper procedures

Truncated least squares: thresholds predictions to [-m, m]

$$\widehat{f}_{trunc}(x) = \max(-m,\min(m,\langle \widehat{w}_{erm},x \rangle)).$$

Truncated least squares: thresholds predictions to [-m, m]

$$\widehat{f}_{trunc}(x) = \max(-m,\min(m,\langle \widehat{w}_{erm},x \rangle)).$$

Improper/nonlinear (due to truncation).

Truncated least squares: thresholds predictions to [-m, m]

$$\widehat{f}_{trunc}(x) = \max(-m,\min(m,\langle \widehat{w}_{erm},x \rangle)).$$

Improper/nonlinear (due to truncation).

Theorem (Györfi et. al, 2002) If $\mathbf{E}[Y^2|X] \leq m^2$, then truncated least squares satisfies: $\mathbf{E}R(\widehat{f}_{trunc}) - \inf_{f \in \mathcal{F}_{lin}} R(f) \leq c \frac{m^2 d \log n}{n} + 7 \Big(\inf_{f \in \mathcal{F}_{lin}} R(f) - R(f_{reg}) \Big)$

Truncated least squares: thresholds predictions to [-m, m]

$$\widehat{f}_{\mathsf{trunc}}(x) = \mathsf{max}(-m, \mathsf{min}(m, \langle \widehat{w}_{\mathsf{erm}}, x \rangle)).$$

Improper/nonlinear (due to truncation).

Theorem (Györfi et. al, 2002) If $\mathbf{E}[Y^2|X] \leq m^2$, then truncated least squares satisfies: $\mathbf{E}R(\widehat{f}_{trunc}) - \inf_{f \in \mathcal{F}_{lin}} R(f) \leq c \frac{m^2 d \log n}{n} + 7 \Big(\inf_{f \in \mathcal{F}_{lin}} R(f) - R(f_{reg}) \Big)$

Distribution-free result (no assumption on P_X !)

Truncated least squares: thresholds predictions to [-m, m]

$$\widehat{f}_{\mathsf{trunc}}(x) = \mathsf{max}(-m, \mathsf{min}(m, \langle \widehat{w}_{\mathsf{erm}}, x \rangle)).$$

Improper/nonlinear (due to truncation).

Theorem (Györfi et. al, 2002) If $\mathbf{E}[Y^2|X] \leq m^2$, then truncated least squares satisfies: $\mathbf{E}R(\widehat{f}_{trunc}) - \inf_{f \in \mathcal{F}_{lin}} R(f) \leq c \frac{m^2 d \log n}{n} + 7 \Big(\inf_{f \in \mathcal{F}_{lin}} R(f) - R(f_{reg}) \Big)$

Distribution-free result (no assumption on P_X !)

Approximation term 7($\inf_{f \in \mathcal{F}_{lin}} R(f) - R(f_{reg})$)

Main results

Truncated least squares: $\widehat{f}_{trunc}(x) = \max(-m, \min(m, \langle \widehat{w}_{erm}, x \rangle))$

Truncated least squares: $\hat{f}_{trunc}(x) = \max(-m, \min(m, \langle \widehat{w}_{erm}, x \rangle))$ **Theorem (M., Vaškevičius, Zhivotovskiy, 2021)** If $\mathbf{E}[Y^2|X] \leq m^2$, then truncated least squares satisfies: $\mathbf{E}R(\widehat{f}_{trunc}) - \inf_{f \in \mathcal{F}_{tin}} R(f) \leq \frac{8m^2d}{n+1}$.

Truncated least squares: $\hat{f}_{trunc}(x) = \max(-m, \min(m, \langle \hat{w}_{erm}, x \rangle))$ **Theorem (M., Vaškevičius, Zhivotovskiy, 2021)** If $\mathbf{E}[Y^2|X] \leq m^2$, then truncated least squares satisfies: $\mathbf{E}R(\hat{f}_{trunc}) - \inf_{f \in \mathcal{F}_{tim}} R(f) \leq \frac{8m^2d}{n+1}$.

Distribution-free guarantee (as before), O(d/n) rate.

Removes approximation term 7($\inf_{f \in \mathcal{F}_{\text{lin}}} R(f) - R(f_{\text{reg}})$) from previous bound (and extra log *n*; gives explicit constant c = 8).

Truncated least squares: $\hat{f}_{trunc}(x) = \max(-m, \min(m, \langle \hat{w}_{erm}, x \rangle))$ **Theorem (M., Vaškevičius, Zhivotovskiy, 2021)** If $\mathbf{E}[Y^2|X] \leq m^2$, then truncated least squares satisfies: $\mathbf{E}R(\hat{f}_{trunc}) - \inf_{f \in \mathcal{F}_{tim}} R(f) \leq \frac{8m^2d}{n+1}$.

Distribution-free guarantee (as before), O(d/n) rate.

Removes approximation term $7(\inf_{f \in \mathcal{F}_{\text{lin}}} R(f) - R(f_{\text{reg}}))$ from previous bound (and extra log *n*; gives explicit constant c = 8). **Simpler proof** (leave-one-out argument)!

Truncated least squares: $\hat{f}_{trunc}(x) = \max(-m, \min(m, \langle \widehat{w}_{erm}, x \rangle))$ **Theorem (M., Vaškevičius, Zhivotovskiy, 2021)** If $\mathbf{E}[Y^2|X] \leq m^2$, then truncated least squares satisfies: $\mathbf{E}R(\widehat{f}_{trunc}) - \inf_{f \in \mathcal{F}_{tru}} R(f) \leq \frac{8m^2d}{n+1}$.

Distribution-free guarantee (as before), O(d/n) rate.

Removes approximation term $7(\inf_{f \in \mathcal{F}_{\text{lin}}} R(f) - R(f_{\text{reg}}))$ from previous bound (and extra log *n*; gives explicit constant c = 8). **Simpler proof** (leave-one-out argument)!

Similar bound for another procedure (Forster & Warmuth, 2002)

In-expectation vs. high-probability guarantees

Previous results (for e.g. truncated least squares) in expectation:

$$\mathbf{E}R(\widehat{f}_n) - \inf_{f\in\mathcal{F}_{\mathrm{lin}}}R(f) \lesssim \frac{m^2d}{n}.$$

In-expectation vs. high-probability guarantees

Previous results (for e.g. truncated least squares) in expectation:

$$\mathbf{E}R(\widehat{f}_n) - \inf_{f\in\mathcal{F}_{\mathrm{lin}}}R(f) \lesssim \frac{m^2d}{n}.$$

What about high-probability guarantees? Given confidence parameter δ , bound of the form

$$\mathbf{P}\Big(R(\widehat{f}_n)-\inf_{f\in\mathcal{F}_{\mathrm{lin}}}R(f)\geq\varepsilon(n,d,\delta)\Big)\leqslant\delta.$$

In-expectation vs. high-probability guarantees

Previous results (for e.g. truncated least squares) in expectation:

$$\mathbf{E}R(\widehat{f}_n) - \inf_{f\in\mathcal{F}_{\mathrm{lin}}}R(f) \lesssim \frac{m^2d}{n}.$$

What about high-probability guarantees? Given confidence parameter δ , bound of the form

$$\mathbf{P}\Big(R(\widehat{f}_n)-\inf_{f\in\mathcal{F}_{\mathrm{lin}}}R(f)\geq\varepsilon(n,d,\delta)\Big)\leqslant\delta.$$

Under assumption $\mathbf{E}[Y^2|X] \leq m^2$, ideal accuracy (see later):

$$\varepsilon(n,d,\delta) \asymp rac{m^2 ig(d+\log(1/\delta)ig)}{n}.$$

("Exponential" bound)

Truncated least squares: $\hat{f}_{trunc}(x) = \max(-m, \min(m, \langle \hat{w}_{erm}, x \rangle))$, with in-expectation bound $\mathbf{E}R(\hat{f}_{trunc}) - \inf_{f \in \mathcal{F}_{lin}} R(f) \lesssim m^2 d/n$.

Truncated least squares: $\hat{f}_{trunc}(x) = \max(-m, \min(m, \langle \hat{w}_{erm}, x \rangle))$, with in-expectation bound $\mathbf{E}R(\hat{f}_{trunc}) - \inf_{f \in \mathcal{F}_{lin}} R(f) \lesssim m^2 d/n$.

Theorem (M., Vaškevičius, Zhivotovskiy, 2021)

For any $n, d \ge 1$, there exists a distribution P of (X, Y) with $|Y| \le m$ such that (same lower bound for Forster-Warmuth)

$$\mathbf{P}\Big(R(\widehat{f}_{\mathsf{trunc}}) - \inf_{f \in \mathcal{F}_{\mathsf{lin}}} R(f) \geqslant c \ m^2\Big) \geqslant c.$$

Truncated least squares: $\hat{f}_{trunc}(x) = \max(-m, \min(m, \langle \hat{w}_{erm}, x \rangle))$, with in-expectation bound $\mathbf{E}R(\hat{f}_{trunc}) - \inf_{f \in \mathcal{F}_{lin}} R(f) \lesssim m^2 d/n$.

Theorem (M., Vaškevičius, Zhivotovskiy, 2021)

For any $n, d \ge 1$, there exists a distribution P of (X, Y) with $|Y| \le m$ such that (same lower bound for Forster-Warmuth)

 $\mathbf{P}(\mathbf{P}(\hat{\mathbf{r}})) \rightarrow \mathbf{r}(\mathbf{r}) = \mathbf{r}(\mathbf{r})$

$$\mathbf{P}\Big(R(f_{\mathsf{trunc}}) - \inf_{f \in \mathcal{F}_{\mathsf{lin}}} R(f) \ge c \, m^2\Big) \ge c.$$

With constant probability, \hat{f}_{trunc} has trivial/constant excess risk.

Truncated least squares: $\hat{f}_{trunc}(x) = \max(-m, \min(m, \langle \hat{w}_{erm}, x \rangle))$, with in-expectation bound $\mathbf{E}R(\hat{f}_{trunc}) - \inf_{f \in \mathcal{F}_{lin}} R(f) \lesssim m^2 d/n$.

Theorem (M., Vaškevičius, Zhivotovskiy, 2021)

For any $n, d \ge 1$, there exists a distribution P of (X, Y) with $|Y| \le m$ such that (same lower bound for Forster-Warmuth)

$$\mathbf{P}\Big(R(\widehat{f}_{\mathsf{trunc}}) - \inf_{f \in \mathcal{F}_{\mathsf{lin}}} R(f) \geqslant c \ m^2\Big) \geqslant c.$$

With constant probability, \hat{f}_{trunc} has trivial/constant excess risk. Contradiction (?) with $m^2 d/n$ bound in expectation?

Truncated least squares: $\hat{f}_{trunc}(x) = \max(-m, \min(m, \langle \hat{w}_{erm}, x \rangle))$, with in-expectation bound $\mathbf{E}R(\hat{f}_{trunc}) - \inf_{f \in \mathcal{F}_{lin}} R(f) \lesssim m^2 d/n$.

Theorem (M., Vaškevičius, Zhivotovskiy, 2021)

For any $n, d \ge 1$, there exists a distribution P of (X, Y) with $|Y| \le m$ such that (same lower bound for Forster-Warmuth)

$$\mathbf{P}\Big(R(\widehat{f}_{\mathsf{trunc}}) - \inf_{f \in \mathcal{F}_{\mathsf{lin}}} R(f) \geqslant c \ m^2\Big) \geqslant c.$$

With constant probability, \hat{f}_{trunc} has trivial/constant excess risk.

Contradiction (?) with m^2d/n bound in expectation? No, since $R(\hat{f}_{trunc}) - \inf_{f \in \mathcal{F}_{lin}} R(f)$ can take **negative values** as \hat{f}_{trunc} is **improper/nonlinear** (compensates in expectation).

Simple (nonlinear) truncated least squares \hat{f}_{trunc} satisfies **optimal** distribution-free **expected** excess risk of m^2d/n

Simple (nonlinear) truncated least squares \hat{f}_{trunc} satisfies **optimal** distribution-free **expected** excess risk of $m^2 d/n$

But at the same time, **fails** with **constant probability**: m^2 risk

Simple (nonlinear) truncated least squares \hat{f}_{trunc} satisfies **optimal** distribution-free **expected** excess risk of $m^2 d/n$

But at the same time, **fails** with **constant probability**: m^2 risk Is there a (necessarily improper/nonlinear) procedure \hat{f}_n achieving ideal **high-probability bound** of

$$R(\widehat{f_n}) - \inf_{f \in \mathcal{F}_{\mathsf{lin}}} R(f) \lesssim rac{m^2 (d + \log(1/\delta))}{n}$$

with probability $1 - \delta$?

Deviation-optimal estimator

Theorem (M., Vaškevičius, Zhivotovskiy, 2021)

For every $n, d \ge 1$, m > 0 and $\delta \ge 1$, there exists a procedure \hat{f}_n (depending on δ and m) such that, for any distribution satisfying $\mathbf{E}[Y^2|X] \le m^2$, with probability $1 - \delta$,

$$R(\widehat{f}_n) - \inf_{f \in \mathcal{F}_{\mathsf{lin}}} R(f) \lesssim rac{m^2 \left(d + \log(1/\delta)
ight)}{n}$$

Deviation-optimal estimator

Theorem (M., Vaškevičius, Zhivotovskiy, 2021)

For every $n, d \ge 1$, m > 0 and $\delta \ge 1$, there exists a procedure \hat{f}_n (depending on δ and m) such that, for any distribution satisfying $\mathbf{E}[Y^2|X] \le m^2$, with probability $1 - \delta$,

$$R(\widehat{f}_n) - \inf_{f \in \mathcal{F}_{\mathsf{lin}}} R(f) \lesssim rac{m^2 ig(d + \log(1/\delta) ig)}{n}.$$

Deviation-optimal procedure, **distribution-free** w.r.t. P_X and only $\mathbf{E}[Y^2|X] \leq m^2$ (robustness to heavy tails).

Theorem (M., Vaškevičius, Zhivotovskiy, 2021)

For every $n, d \ge 1$, m > 0 and $\delta \ge 1$, there exists a procedure \hat{f}_n (depending on δ and m) such that, for any distribution satisfying $\mathbf{E}[Y^2|X] \le m^2$, with probability $1 - \delta$,

$$R(\widehat{f}_n) - \inf_{f \in \mathcal{F}_{\mathsf{lin}}} R(f) \lesssim rac{m^2 \left(d + \log(1/\delta)
ight)}{n}.$$

Deviation-optimal procedure, **distribution-free** w.r.t. P_X and only $\mathbf{E}[Y^2|X] \leq m^2$ (robustness to heavy tails).

Depends on confidence δ (unavoidable).

Theorem (M., Vaškevičius, Zhivotovskiy, 2021)

For every $n, d \ge 1$, m > 0 and $\delta \ge 1$, there exists a procedure \hat{f}_n (depending on δ and m) such that, for any distribution satisfying $\mathbf{E}[Y^2|X] \le m^2$, with probability $1 - \delta$,

$$R(\widehat{f}_n) - \inf_{f \in \mathcal{F}_{\mathsf{lin}}} R(f) \lesssim \frac{m^2 (d + \log(1/\delta))}{n}.$$

Deviation-optimal procedure, **distribution-free** w.r.t. P_X and only $\mathbf{E}[Y^2|X] \leq m^2$ (robustness to heavy tails).

Depends on confidence δ (unavoidable).

Explicit, though involved, procedure. Computationally expensive

• First step: truncate linear functions to *m*, class \mathcal{F}_{trunc} . Only reduces risk, gives bounded functions, but non-convex class!

- First step: truncate linear functions to *m*, class \mathcal{F}_{trunc} . Only reduces risk, gives bounded functions, but non-convex class!
- Second step: form some random/empirical finite discretization of the class \mathcal{F}_{trunc} . Needed for technical reasons (heavy tails).

- First step: truncate linear functions to *m*, class \mathcal{F}_{trunc} . Only reduces risk, gives bounded functions, but non-convex class!
- Second step: form some random/empirical finite discretization of the class \mathcal{F}_{trunc} . Needed for technical reasons (heavy tails).
- <u>Third step</u>: use ideas from **model aggregation** theory (Star-type algorithm, Audibert 2008) to handle **non-convexity** of the class.

- First step: truncate linear functions to *m*, class \mathcal{F}_{trunc} . Only reduces risk, gives bounded functions, but non-convex class!
- Second step: form some random/empirical finite discretization of the class \mathcal{F}_{trunc} . Needed for technical reasons (heavy tails).
- <u>Third step</u>: use ideas from **model aggregation** theory (Star-type algorithm, Audibert 2008) to handle **non-convexity** of the class.
- Fourth step: Extend above from bounded to heavy-tailed setting through **robust mean estimators** and min-max procedures.

- First step: truncate linear functions to *m*, class \mathcal{F}_{trunc} . Only reduces risk, gives bounded functions, but non-convex class!
- Second step: form some random/empirical finite discretization of the class \mathcal{F}_{trunc} . Needed for technical reasons (heavy tails).
- <u>Third step</u>: use ideas from **model aggregation** theory (Star-type algorithm, Audibert 2008) to handle **non-convexity** of the class.
- Fourth step: Extend above from bounded to heavy-tailed setting through **robust mean estimators** and min-max procedures.

Note: the resulting procedure is **not practical** for large d!

No **proper/linear** procedure (least squares or robust alternatives) gives any useful bound in this distribution-free setting

No **proper/linear** procedure (least squares or robust alternatives) gives any useful bound in this distribution-free setting

Truncated least squares achieves m^2d/n excess risk in expectation (improving 'classical' bound)... but fails (m^2 risk) with **constant probability**.

No **proper/linear** procedure (least squares or robust alternatives) gives any useful bound in this distribution-free setting

Truncated least squares achieves m^2d/n excess risk in expectation (improving 'classical' bound)... but fails (m^2 risk) with **constant probability**.

Robust procedure **optimal with high probability** (extends to nonlinear VC-subgraph classes).

No **proper/linear** procedure (least squares or robust alternatives) gives any useful bound in this distribution-free setting

Truncated least squares achieves m^2d/n excess risk in expectation (improving 'classical' bound)... but fails (m^2 risk) with **constant probability**.

Robust procedure **optimal with high probability** (extends to nonlinear VC-subgraph classes).

Future directions: Practical procedure? Adapting to m?

Thank you!