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Statistical learning (regression)

e Prediction problem: predict y € R based on covariates x € R?

e Random pair (X, Y) ~ P on RY x R, distribution P unknown

e Risk R(f) = E[(f(X) — Y)?] of prediction function f : R = R

o Fin = {x+ (w,x) : w € R9} class of linear functions

e Given (X1, Y1),...,(Xn, Yn) € R? x R i.i.d. sample from P, find
function f : RY — R whose excess risk

~

E(F) = R(F) — inf R(f)

~

is small with high probability. I.e., prediction error R(f) of f is
almost as small as that of the best linear function.
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Some basic facts

Let f,, : x — (w,x), and Fji, = {f,, : w € R}

Assuming EY? < oo, E||X||? < oo, the risk minimizer is f,«, with
w* =Y 1E[YX], where ¥ =EXXT.
Excess risk of a linear function f,, is

E(fy) = R(fy) — R(fur) = E(f(X) = f=(X))?
2

Note that w*, X are unknown since P is.



Least squares estimator

Population risk is R(f) = E(f(X) — Y)2. Define empirical risk by



Least squares estimator

Minimized in Fy;, by least squares/emp. risk minimizer fom:

. o R 1
form = a;ggilnn Ra(f) = fa,.., where Wem =2," = Z Y: X;,

e _1¢ . | |
with >, 1= — g X;X;" the empirical covariance matrix
n
i=1
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Performance of the least squares estimator

w* = argmin,, crs R(f,) best parameter, error £ = Y — (w*, X)

Excess risk of the least squares estimator irm is

R(form) — R(f) = Hzlﬂf,jlzl/z 1 Zg,-z—
n <

< Amin(Z Y25, TY2) H Za,

matrix fluctuations/random design

" noise”
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Analysis of least squares under boundedness or light tails

Boundedness assumption: || ~1/2X|| < C\/d as.
Or sub-Gaussian tail: P(|(w, X)| > t||w||s) < 2exp(—t?/x?)

These strong/restrictive assumptions on X imply (two-sided)
matrix concentration: %Z <XX,=<x2Xfornz=d.

If, in addition, errors are well-behaved (sub-Gaussian), then least

squares achieves the (optimal) bound

Q.

~

R(ferm) — inf R(f) S —.
(Fam) = inf R() S ©

Intuition: empirical risk is close to population risk over Fjin

Some references: Caponnetto, De Vito, 2007; Catoni, 2004; Hsu et al., 2014
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Weakened assumptions: finite moment equivalence for X:

vweRY,  (E(w, X)) < k(E(w, X)?)"?

(Oliveira, 2016). Related “small-ball" assumption (Koltchinskii &
Mendelson, 2015; Lecué & Mendelson, 2016, M., 2019). \Weaker
assumption on X implies (one-sided) lower isometry ¥ = %Z.

If error is also light-tailed, this suffices to show that least squares
achieves O(d/n) excess risk.

Intuition: functions with large excess risk have large empirical risk.
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vw e RY, (E(w, X))"* < k(E(w, X)?)"?.

But, in addition, error £ = Y — (w*, X) can be "heavy-tailed” too.

Here, least squares ferm is suboptimal, but some robust
estimators do achieve the O(d/n) bound. (Audibert & Catoni 2010,
Lugosi & Mendelson 2019, Catoni 2016)

Weaker assumption on X, though still non-trivial restriction. In
some simple cases, k depends on d, leading to suboptimal bounds.

Can we remove any assumption on the distribution of X7
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“Distribution-free” setting

Joint distribution P = P(x yy of (X, Y) is characterized by:

e Distribution Px of X, probability distribution on R

e Conditional distribution Py|x = (Py|x=x)xer¢ (family of
distributions on R indexed by x € RY).
Remark: Risk R(f) is minimized (among all functions) by the
regression function

freg(X) = E[Y|X = x].
A guarantee is distribution-free if it holds for all distributions Px.

1. Is it possible to obtain distribution-free guarantees?

2. If so, what are the minimal conditions on Py x?

10
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Minimal assumption on the conditional distribution

Main Assumption (on Py |x)

There exists a constant m > 0 such that

sup E[Y?|X = x] < m°.
x€R4

This condition holds if Y is bounded: |Y| < m as.

But : compatible with heavy tails of Y, only
(conditional) second moment bound.

For instance, one can have EY?*¢ = +o00 for any ¢ > 0. (Take
Y =Y’ + ¢ with | Y| < m/v/2 and £ independent of X with
E¢2 < m?/2 and E€2F¢ = +o0 for € > 0).
to obtain Px-free guarantees (see later)
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Limitations of proper estimators

A procedure f, is called (or: ) if it always returns a
linear function f, € Fjin.

Remark: includes least squares fom, but also most procedures in
the literature (including in robust regression).

Proposition (Shamir, 2015)

For all n,d > 1 and any proper procedure fn there exists a
distribution P with |Y| < 1 such that

ER(f,) — Jinf R(f) 21

(Upper bound of 1 trivially achieved by zero function £, =0. )

No nontrivial distribution-free guarantee for procedures
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Classical bound for truncated least squares

Truncated least squares: thresholds predictions to [—m, m]
firunc(x) = max(—m, min(m, <Wermv x)))-

/nonlinear (due to truncation).

Theorem (Gyorfi et. al, 2002)

If E[Y?|X] < m?, then truncated least squares satisfies:

2
_ |
ER(Frunc) — inf R(f) < ¢ 191087

fe}—lin

7( inf R(F) — R(fe )
+7(inf R() = R(fug)
Distribution-free result (no assumption on Px!)
Approximation term 7(infrcr, R(f) — R(fieg))

13



Main results




Improved bound in expectation for truncated least squares

Truncated least squares: frunc(x) = max(—m, min(m, (Werm, x)))

14



Improved bound in expectation for truncated least squares

Truncated least squares: ?trunc(x) = max(—m, min(m, (Werm, x)))

Theorem (M., Vaskevitius, Zhivotovskiy, 2021)
IfE[Y2|X] < m?, then satisfies:

~ 8m?d
ER(fiunc) — inf R(f) < .
(t ) fler}:“n ( ) n -+ 1

14



Improved bound in expectation for truncated least squares

Truncated least squares: ?trunc(x) = max(—m, min(m, (Werm, x)))

Theorem (M., Vaskevitius, Zhivotovskiy, 2021)
IfE[Y2|X] < m?, then satisfies:

~ 8m?d
ER(fiunc) — inf R(f) < .
(t ) fler.]F“n ( ) n -+ 1

Distribution-free guarantee (as before), O(d/n) rate.

Removes approximation term 7(infrcr, R(f) — R(fieg)) from
previous bound (and extra log n; gives explicit constant ¢ = 8).

14



Improved bound in expectation for truncated least squares

Truncated least squares: frunc(x) = max(—m, min(m, (Werm, x)))

Theorem (M., Vaskevitius, Zhivotovskiy, 2021)

If E[Y2|X] < m?, then truncated least squares satisfies:

~ 8m?d
ER(fiunc) — inf R(f) < .
(t ) fler.]/—'“n ( ) n -+ 1

Distribution-free guarantee (as before), O(d/n) rate.

Removes approximation term 7(infrcr, R(f) — R(fieg)) from
previous bound (and extra log n; gives explicit constant ¢ = 8).
Simpler proof (leave-one-out argument)!

14



Improved bound in expectation for truncated least squares

Truncated least squares: frunc(x) = max(—m, min(m, (Werm, x)))

Theorem (M., Vaskevitius, Zhivotovskiy, 2021)

If E[Y2|X] < m?, then truncated least squares satisfies:

~ 8m?d
ER(fiunc) — inf R(f) < .
(t ) fler.]/—'“n ( ) n -+ 1

Distribution-free guarantee (as before), O(d/n) rate.

Removes approximation term 7(infrcr, R(f) — R(fieg)) from
previous bound (and extra log n; gives explicit constant ¢ = 8).
Simpler proof (leave-one-out argument)!

Similar bound for another procedure (Forster & Warmuth, 2002)

14
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In-expectation vs. high-probability guarantees

Previous results (for e.g. truncated least squares) in expectation:

What about high-probability guarantees? Given confidence
parameter 0, bound of the form

P(R(fn) ~inf R(f) >&(n.d. o‘)) <.

Under assumption E[Y2|X] < m?, ideal accuracy (see later):

e(n, d, o) = it (elh LOg(l/(‘))

(“Exponential” bound)

ii5)
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Truncated least squares: ftrunc(x) = max(—m, min(m, (Werm, x))),
with in-expectation bound ER(E,unC) —infrer, R(f) < m?d/n.

Theorem (M., Vaskevitius, Zhivotovskiy, 2021)
For any n,d > 1, there exists a distribution P of (X,Y') with
|Y| < m such that (same lower bound for Forster-Warmuth)

= . )
P<R(ftrunc) fIEr}ﬁin R(f) >cm ) > C.

With , ?trunc has excess risk.

Contradiction (?) with m?>d/n bound in expectation? No, since
R(firunc) — infrer, R(f) can take negative values as fiync is
(compensates in expectation).
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Natural remaining question

Simple (nonlinear) truncated least squares fmmc satisfies optimal
distribution-free expected excess risk of m?d/n

But at the same time, fails with constant probability: m? risk

Is there a (necessarily improper/nonlinear) procedure f, achieving
ideal high-probability bound of

R(F) -~ jnf R(F) 5 T80/

with probability 1 — §7

17



Deviation-optimal estimator

Theorem (M., Vaskevitius, Zhivotovskiy, 2021)

For every n,d > 1, m > 0 and § > 1, there exists a procedure ?n
(depending on 6 and m) such that, for any distribution satisfying
E[Y?2|X] < m?, with probability 1 — 6,

A) _ () < m?(d + log(1/6))
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Deviation-optimal estimator

Theorem (M., Vaskevitius, Zhivotovskiy, 2021)

For every n,d > 1, m > 0 and § > 1, there exists a procedure ?n
(depending on 6 and m) such that, for any distribution satisfying
E[Y?2|X] < m?, with probability 1 — 6,

m? (d + |og(1/5))
fEFin ~ n

Deviation-optimal procedure, distribution-free w.r.t. Px and
only E[Y?|X] < m? (robustness to ).

Depends on confidence ¢ (unavoidable).

Explicit, though involved, procedure. Computationally

18
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Two sources of difficulty: no assumption on X, and possibly
heavy-tailed Y.

e First step: truncate linear functions to m, class Firunc. Only
reduces risk, gives bounded functions, but non-convex class!

e Second step: form some random /empirical finite discretization
of the class Firunc. Needed for technical reasons (heavy tails).

e Third step: use ideas from model aggregation theory (Star-type
algorithm, Audibert 2008) to handle non-convexity of the class.

e Fourth step: Extend above from bounded to heavy-tailed setting
through robust mean estimators and min-max procedures.

Note: the resulting procedure is not practical for large d!
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Truncated least squares achieves m?d/n excess risk in
expectation (improving 'classical’ bound). . . but fails (m? risk) with
constant probability.

Robust procedure optimal with high probability (extends to

nonlinear VC-subgraph classes).

Future directions: Practical procedure? Adapting to m?

20



Thank youl!
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