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Supervised Statistical Learning

Predict a quantity of interest (label, output) based on associated
variables (input), given some examples

E cat, dog
Inputs Outputs

Applications: visual object recognition (e.g. tumor detection),
speech recognition, automatic translation. ..

Principle: use available data to find correlations between inputs
and outputs



Overview of the thesis

1. Mondrian Random forests
e Chap. 2: statistical analysis [M., Gaiffas, Scornet 2018]
e Chap. 3: efficient online version [M., Gaiffas, Scornet 2019]
2. Expert aggregation
e Chap. 4: behavior of Hedge in stochastic regime [M., Gaiffas 2019]
e Chap. 5: tracking growing expert classes [M., Maillard 2017]
3. Density estimation, least squares and logistic regression

e Chap. 6: linear least squares and covariance matrices [M. 2019]
e Chap. 7: density estimation and logistic regression [M., Gaiffas
2019]



Overview of the thesis

1. Mondrian Random forests
e Chap. 2: statistical analysis [M., Gaiffas, Scornet 2018]
e Chap. 3: efficient online version [M., Gaiffas, Scornet 2019]
2. Expert aggregation
e Chap. 4: behavior of Hedge in stochastic regime [M., Gaiffas 2019]
e Chap. 5: tracking growing expert classes [M., Maillard 2017]

3. Density estimation, least squares and logistic regression

e Chap. 6: linear least squares and covariance matrices [M. 2019]
e Chap. 7: density estimation and logistic regression [M., Gaiffas
2019]

Most of this presentation will be about the last part



Mondrian Random forests



Random forests
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e Decision tree partitions space recursively with axis-aligned
splits, then constant prediction on each cell

e Random forests average forecasts of randomized decision
trees

e Introduced by Breiman (2001), often used in classification and
regression



Mondrian Random Forests [M., Gaiffas, Scornet; 2018, 2019]
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A variant of Random Forests introduced by Roy and Teh (2008)
Analytically tractable: exact distribution of cells

Unlike other simplified RF, achieve minimax nonparametric rates
Effect of averaging, extends Arlot & Genuer 2014 for 1d forests

Efficient online implementation



Prediction with expert advice



Prediction with expert advice!

Experts 1 </ < M: sources of predictions at time 1 <t < T
Sequentially combine forecasts, predict as well as best one
Standard Exponential Weights algorithm: worst-case optimal

Beyond worst case®: characterize behavior of simple variants on
stochastic problems, to identify benefit of adaptive algorithms

'[M., Maillard, 2017]; %[M., Gaiffas, 2019]



Least squares regression and
covariance matrices



Linear regression

12

10
8

g o0
.

|
N oo N s o

e (X,Y)eRIxR; R(O) =E[(Y — (8, X))?] risk of § € RY



Linear regression

12

10
8

|
N oo N s o

e (X,Y)eRIxR; R(O) =E[(Y — (8, X))?] risk of § € RY
o (X1, Y1),...,(Xn, Yn) € RY x R i.i.d. sample
e Goal: find 5,, with small excess risk

E(6n) = R(On) — inf R(6) = [10n — 0"}

with ¥ := E[XX "] covariance matrix and #* := ¥ E[YX]



Linear regression
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e (X,Y)eRIxR; R(O) =E[(Y — (8, X))?] risk of § € RY
(X1, Y1), ..., (Xpn, Yn) € RY x R iLi.d. sample
Goal: find 5,, with small excess risk

E(6n) = R(On) — inf R(6) = [10n — 0"}

with ¥ := E[XX "] covariance matrix and #* := ¥ E[YX]
No prior knowledge on 6* € R

Hardness as a function of distribution Px of X



Minimax excess risk

Y = (0", X) + ¢ with E[eX] = 0. P(x y) depends on Px, P, x, 0"



Minimax excess risk

Y = (0", X) + ¢ with E[eX] = 0. P(x y) depends on Px, P, x, 0"
o Px fixed,;

e E[e?|X] < 02 and E[¢|X] = 0 (well-specified);

e 0* € RY arbitrary



Minimax excess risk

Y = (0", X) + ¢ with E[eX] = 0. P(x y) depends on Px, P, x, 0"
o Px fixed;
e E[e?|X] < 02 and E[¢|X] = 0 (well-specified);

e 0* € RY arbitrary

Minimax excess risk

E¥(Px,0?) = infsupE[R(6,) — R(6")]
0, P



Minimax risk in the well-specified case

Px degenerate if P(X € H) > 0 for some hyperplane H C R¢



Minimax risk in the well-specified case

Px degenerate if P(X € H) > 0 for some hyperplane H C R¢

Proposition

If Px is or , minimax excess risk is infinite:

inf  sup  E[E(,)] = +0
0n PEP(Px,0°?)



Minimax risk in the well-specified case

Px degenerate if P(X € H) > 0 for some hyperplane H C R¢

Proposition

If Px is or , minimax excess risk is infinite:

inf  sup  E[E(,)] = +0
0n PEP(Px,0°?)

Otherwise, OLS estimator is uniquely defined and minimax

é,I,‘S = argmin Z(Y, — (6, X;))?
0cRd =il



Link with leverage scores

Leverage score of X1 among (X;)"™ [Voi1 = (655, Xa11)]

) - a)/;nqtl
n+1 - 8yn+1

[
High leverage

n+1
- < ( > XX
i=1

-1
> Xn+1a Xn+1>

L]
High leverage

X

10



Link with leverage scores

Leverage score of X,;1 among (X;)"'} [Yn+1 <0$§r1, Xnt1)]

R aerl n+1 =1l
bpi1 = n = XiX; Xna1, X
e <(z ) " >

Theorem (M., 2019)

Minimax excess risk over P(Px,c?) is characterized by

distribution of leverage scores ¢, 1: for every Px,

o~

inf  sup  E[E(0,)] =02 E{Eiil}
6, PEP(Px,02) 1—4,01

Uneven leverage scores = é\LS

effectively determined by less
points =
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e <(z ) " >

Theorem (M., 2019)

Minimax excess risk over P(Px,c?) is characterized by

distribution of leverage scores ¢, 1: for every Px,

~

inf sup  E[E(0n)] :02.1@[ bt } >
6n PEP(Px,02) 1—4h11

o2d
n—d-+1

Uneven leverage scores = é\LS

effectively determined by less
points =
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Distribution-dependent lower bound

e For every Px, minimax risk > o?d/(n—d + 1)

o If n,d = o0, d/n— v €(0,1): a%>v/(1 — v) lower bound

11



Distribution-dependent lower bound

e For every Px, minimax risk > o2d/(n —d + 1)
o If n,d = o0, d/n— v €(0,1): a%>v/(1 — v) lower bound

e Random-design regression harder than fixed-design
regression (in minimax sense): there o2d/n — o2 - 5
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Distribution-dependent lower bound

e For every Px, minimax risk > o2d/(n —d + 1)
o If n,d = o0, d/n— v €(0,1): a%>v/(1 — v) lower bound

e Random-design regression harder than fixed-design
regression (in minimax sense): there o2d/n — o2 - 5

e If X ~ N(0,X) Gaussian, o2d/(n—d —1) = o?v/(1 —7)
e Almost easiest design, constant leverage in high dimension

e Complements “universality” results for independent covariates

11



Dependence on signal strength

Y|X ~ N({6*%, X),02). Prior 0* ~ N(0,(c%n?/d)L1).
n? = E[(0*, X)?] /o (SNR)

Theorem (“Marchenko-Pastur” lower bound; M., 2019)
For any distribution Px with E[XX ] = ¥, Bayes risk larger than

o —(n+1-d+d/n?) +/(n+1-d+d/n?)?+4d?/n?

7 2d /12
Ml et et ok orh 2 e
[ ) Ig er an Tixea- eSIgn rISK o 7]2+d/n

e Matching limit for Gaussian design as d/n — v (Dicker 2016):

o2 —(L=y+v/m)+V A=r+7/12)P+472
2y/m?
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Minimax upper bound: small-ball property

Requires to control negative moments of ¥, = n~! Do X,-X,-T

Key assumption: “small ball” property?: 3C > 1,0 € (0,1) s.t.

Vt > 0, H hyperplane, P(dist(ZY2X, H) < t) < (Ct)* (1)

2Koltchinskii & Mendelson 2015, Mendelson 2014, Lecué & Mendelson 2016
(for a single t € (0,C™1)).

13



Minimax upper bound: small-ball property

Requires to control negative moments of ¥, = n~! P X,-X,-T

Key assumption: :3C > 1,a € (0,1) s.t.

Vt > 0, H hyperplane, P(dist(ZY2X, H) < t) < (Ct)* (1)

Theorem (M., 2019)
Under assumption (1), there exist C',c’ such that for n 2 d
Ve e (0,1), PAmn(Z 25,27 Y2) < t) < (C'e)"

This is unimprovable for t € (0,c),d > 2; and (1) is necessary.

Relies on PAC-Bayesian technique; here t € (0, ¢), complements
results of (Oliveira 2016, Koltchinskii & Mendelson 2015) for t € (¢, 1)

13



Minimax upper bound

Small-ball: dist(X~2X, H) < (Ct)® for all t > 0

Kurtosis: B[|X~1/2X||* < kd?

Theorem (Risk of OLS: well-specified case)

Under those assumptions, if P € P(Px, 02), and n > 6d/«,

where C' = 28C4elt9/e

Bound in expectation; previous results for OLS in probability only

Also bound in misspecified case under 4th moment assumption

14



Random-design linear regression

e Minimax risk characterized by leverage scores

Lower bound achieved by Gaussian design

Upper bounds based on study of empirical covariance f,,

ii5)



Misspecified density estimation and
logistic regression




Predictive density estimation




Predictive density estimation: setting

e Sample Z{' = (Z,...,2Z,) ~ P" on Z", P unknown
e Predict new sample Z ~ P (probabilistic prediction)

e f density, point z: log-loss /(f.z) = —log f(z). Risk
R(f) = E[((f, Z)]

16



On logarithmic loss: /(

e Standard loss function, connected to lossless compression

17



On logarithmic loss: ((f,z) = —log f(z)

e Standard loss function, connected to lossless compression

e Minimizing R amounts to maximizing joint probability given
to a large test sample (Z7,...,Z,,) ~ P™:

f(Zf) = exp (= Y UF,Z))) = exp [ = m(R(F) + o(1))]
i=1

i=1

17



On logarithmic loss: ((f,z) = —log f(z)

e Standard loss function, connected to lossless compression

e Minimizing R amounts to maximizing joint probability given
to a large test sample (Z7,...,Z,,) ~ P™:

[1f(z)=exe (- Ze (F.Z})) = exp [ = m(R(f) + o(1))]

i=1

e Risk minimized by true density p = dP/du, and

R(f) - R(p) = Ez.p | log (‘;8)] — KL(p, ) > 0

is the Kullback-Leibler divergence (relative entropy)

17



Well-specified case: asymptotic optimality of the MLE

F ={fy: 0 € © CRY} regular parametric model of dimension d.
Assume p € F (well-specified model).

The Maximum Likelihood Estimator (MLE) (or ERM) f,:

fr = argmin — Uf, Z;) =argmax | | f(Z
! feFr nz feF Il_Il

satisfies, as n — oo, (e.g., van der Vaart 1998)

E[R(%)] — inf R(f) = ke <1> .

2n n

d/(2n) rate is asymptotically optimal: MLE is efficient.

18



Misspecified case (agnostic statistical learning)

Assumption p € F is restrictive and generally not satisfied

General misspecified case where p ¢ 7: model F is wrong but
useful. Excess risk

() = R(f,) — inf R(f)

19



Misspecified case (agnostic statistical learning)

Assumption p € F is restrictive and generally not satisfied

General misspecified case where p ¢ 7: model F is wrong but
useful. Excess risk

E(fn) = R(f) = Inf R(F)

MLE )?,, can degrade under model misspecification:

= . deff 1
E[R(f,)] — flgﬁ__R(f) =5, to <n>
(degr = tr[HY2GH=Y/?], G = E[VL(0*, 2)VL(0*,2)T], H = V2R(6*))
d.ir depends on P, and we may have d.g > d.

19



Cumulative risk and online-to-batch conversion

Well-understood sequential problem (Merhav 1998, Cesa-Bianchi &
Lugosi 2006): there exist go, . ..,8n_1 S.t., for every Z1,..., 2Z,,

Zﬁ(g\t_l,Zt = |nf Zﬂ (f,Z:) < |ogn+ C(F)

for 7 bounded family.

20



Cumulative risk and online-to-batch conversion

Well-understood sequential problem (Merhav 1998, Cesa-Bianchi &
Lugosi 2006): there exist go, . ..,8n_1 S.t., for every Z1,..., 2Z,,

Zﬁ(g\t_l,Zt = |nf Zﬂ (f,Z:) < |ogn+ C(F)

for 7 bounded family. Implies (Barron 1989, Catoni 1997, Yang
2000) excess risk of

dlogn C(F) _ ~
2n u n o g"_n—l—ltz;gt'

E[€(&n)] <

20



Cumulative risk and online-to-batch conversion

Well-understood sequential problem (Merhav 1998, Cesa-Bianchi &
Lugosi 2006): there exist go, . ..,8n_1 S.t., for every Z1,..., 2Z,,

ZE 8i—1,2Zt) — |nf Zﬁ (f,Z:) < |0gn+ C(F)

for 7 bounded family. Implies (Barron 1989, Catoni 1997, Yang
2000) excess risk of

dlogn  C(F) .1 &
E[E(gn)] < n +T for gn—n_i_ltz;gt-

e Distribution-free bound;
e Suboptimal rate for individual risk, inefficient predictor.
Infinite for unbounded families, computational complexity.

20



SMP: Sample Minmax Predictor




Conditional density estimation (supervised learning)

Probabilistic prediction of label y € ) given input x € X

Conditional densities f(x) = f(-|x) on Y

Log-loss of f at z = (x,y) € X x V'is

U(f, z) = £(f(x),y) = —log f(y[x)

Risk R(f) = —E[log f(Y|X)]

Class F of conditional densities

Weak assumptions on Pyx: misspecification means py|x & F

21



SMP: Sample Minmax Predictor

Given virtual sample (x,y): add-one MLE
i = argminger { 3505, £(F(X0), V) + £(F(x), y)}
Sample Minmax Predictor (SMP) is

fa(x) = arggminjgg {t(g,y) — UEY(x),¥)}

e Minimizes general excess risk bound

“Center” of family of perturbed MLEs

Generally improper: f ¢ F

Regularized variant

22



SMP for log-loss

Theorem (M., Gaiffas, 2019)

SMP writes Sy
fo ” (yx)

Jy B (v [ uldy’)

and satisfies excess risk bound

Ful(y|x) =

BlE()] < Ezzx o ( | £/ 0100m(a)].

Close to SNML online algorithm (Rissanen—Roos; Kottowski—Griinwald)

Rhs: complexity measure tailored to log-loss (statistical, “localized”

analogue of NML-Shtarkov integral from sequential prediction)
Leads to O(d/n) bounds in misspecified case

23



Gaussian linear model




Gaussian linear model

e (X,Y)€eR?I xR, model F = {fy(-|x) = N((#,x),1): 0 € RY}

(v — 6,x))> and R(fy) = %E[(Y (0, X))]

N

(fy, (x,y)) =

e For plug-in estimators f, = f; € F, equivalent to
least-squares regression

e Otherwise different problem: estimating Py|x vs. E[Y|X]

24



SMP in the Gaussian linear model

Theorem (SMP for the Gaussian linear model)
SMP is

) = A (5520, (1 4+ (0E0) ) 7)

and, denoting ¢,.1 leverage score of X, in X/,

- A d d
E[EF)] < E[ -~ log (1~ Zni1)] N 2(1+ k).

twice well-specified minimax risk

e Upper bound does not depend on Py x (only on Px)
o Twice well-specified minimax risk
e d/n+0((d/n)?) vs E[(Y — (6", X))?||=~/2X][?]/(2n) for MLE

25



Logistic regression




Logistic regression: setting

s 55 5
e Binary label Y € {-1,1} 3!'“ = covariates X € RY. Risk
of conditional probability (+1|x)

R(f) =E[-log f(Y]|X)].
o F ={fy: 0 c R} logistic model of Y|X:

f(1lx) = Po(Y = 1|X = x) = o({0,x)), o(u) = —— sigmoid

1+ et

08

06

fo(1]X)

(0,%)

26



Learning rates for logistic regression

Assume || X|| < R, and let Fg = {fy : ||0|| < B}. Excess risk

E[R(f3)] — fienj_fB R(f).

27



Learning rates for logistic regression

Assume || X|| < R, and let Fg = {fy : ||| < B}. Excess risk

E[R(f3 )] — Jnf R(f).

Slow rate of O(BR/+/n) (convex Lipschitz problem) achieved by:
e Constrained ERM over Fp

e Ridge-ERM 0, , = argmin, R(6) + A||0]|2 with A = R/(B\/n)
e Projected SGD on Fp with averaging, step size n = B/(R+/n)

27



Learning rates for logistic regression

Assume || X|| < R, and let Fg = {fy : ||0|| < B}. Excess risk

E[R(f3 )] — fienj_fB R(f).

Slow rate of O(BR/+/n) (convex Lipschitz problem)

“Fast” rate of O(deBR/n) (e~BR-exp-concave problem) through:

e Aggregation with exponential weights with averaging?®,
learning rate n = e BR

e Online Newton Step® (averaged)

¢ Ridge-ERM®’

2Vovk 1998, ®Hazan et al. ®Koren & Levy 2015 "Mehta 2017
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Learning rates for logistic regression

Assume || X|| < R, and let Fg = {fy : ||0|| < B}. Excess risk

E[R(f)] — inf R(F).

Slow rate of O(BR/+/n) (convex Lipschitz problem)
“Fast” rate of O(deBR/n) (e=BR-exp-concave problem)

Refined analyses? of regularized ERM (self-concordance) O(pd/n),

p distribution-dependent curvature, worst-case p =< eBF

e Asymptotic risk of MLE can be as large as ~ defR/n

e Can be much smaller in practice

2Bach 2011, 2014, Bach & Moulines 2013, Ostrovskii & Bach 2018,
Marteau-Ferey et al. 2019
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Learning rates for logistic regression

Assume || X|| < R, and let Fg = {fy : ||0|| < B}. Excess risk

E[R(f,)] - jnf R(f).

Slow rate of O(BR/+/n) (convex Lipschitz problem)
“Fast” rate of O(deBR/n) (e~BR-exp-concave problem)
Refined analyses (self-concordance), O(deBR/n) in worst case

Lower bound?: no proper estimator f; € Fp can achieve better
rate (without further assumptions) than

min (\B;I;dei’?).

2Hazan et al. 2014

27



Improper estimators for logistic regression

min(deBR /n, BR/\/n) lower bound for proper estimators
Does not apply to improper estimators

Online-to-batch conversion of Bayesian mixture strategies gives

ER(fy) — inf R(f) = o(% Iog(BRn)).

BR = O(V/d) (natural in finite dim.) leads to O( )
bound

28



Improper estimators for logistic regression

Averaged Bayesian posteriors: Consider f,, = %Z't’zl ?t where

Ak = [ o(6.0)7(d0)
where 7 posterior 7(+| X1, Y1, ..., Xt, Y¢) with density (wrt )

Hﬁfia( Ys(6, Xs))
f]Rd 51‘7 = Ys(¢', Xs))m(dO')

Prediction for x requires approximate posterior sampling

Open question from Foster et al. (2018). Practical procedure
with fast rates?

29



SMP for logistic regression

SMP-Logistic
e Given x € RY, for y € {—1,1}, compute add-one MLE

6% ¢ argmin ZE(Y,-(Q,X,-)) + (v (6, x))
0cR i=1

e Predict P(Y = y|X = x) by

folylx) = —— -
(v[x) >

Replaces posterior sampling by optimization
Non-Bayesian way to calibrate predictions for logistic regression
Note: still : requires to update gt

30



MLE vs. SMP for logistic regression

Separated data MLE SMP

e MLE ill-defined, over-confident predictions

e SMP well-defined, better calibrated predictions
(fa(ylx) € (0,1))

31



SMP-Ridge for logistic regression

Ridge-MLE augmented by virtual sample (x, y):

(Zf )+ 0.5)) + 31617

where £(z) = log(1 + e~#). Ridge-SMP is

6, = argmin {
’ 0cRd

o~ , A é\x,y 2 5
U(Y<9;,},/,X>)e X1/

0 Ok X~ Y OelE:
(B8, x))e ORI o o (— (G x))e MO I/

g\,n(y|x) =

32



SMP for logistic regression: guarantees

Theorem (M., Gaiffas, 2019)

Assume || X|| < R. Ridge-SMP with \ = % satisfies, for any
B >0,
= 3d 4+ B?R?

E[R(hn)] — inf R(f) < =

e O((d + B2R?)/n); for BR = O(v/d) gives O(d/n) bound
e Bypasses min(BR/\/n, deBR /n) for
estimators (incl. Ridge logistic regression)

e Foster et al. 2018: O(d log n/n). But more importantly
computationally cheaper

e Dimension-free bound (tr[(X + A\/)~1X] instead of d)

33



Conclusion

MLE (plug-in estimators) overly confident

SMP: procedure for conditional density estimation

Simple with improved guarantees for logistic regression
Quantifies uncertainty using virtual sample, non-Bayesian
Next directions

e High probability bounds

e Online logistic regression? (recent work by Jézéquel, Gaillard, Rudi)
Other online learning problems?

e Other generalized linear models?

34



Publications

e J M., O.-A. Maillard. Efficient tracking of a growing number of
experts. In Proc. Algorithmic Learning Theory (ALT), 2017

e J.M., S. Gaiffas, E. Scornet. Minimax optimal rates for Mondrian trees
and forests. To appear in Annals of Statistics, 2020. NeurlPS 2017

e J.M., S. Gaiffas, E. Scornet. AMF: Aggregated Mondrian forests for
online learning. In revision, 2019

e J.M., S. Gaiffas, On the optimality of the Hedge algorithm in the
stochastic regime. Journal of Machine Learning Research, 2019

e J. M. Exact minimax risk for linear least squares, and the lower tail of
sample covariance matrices. Submitted, arXiv:1912.10754, 2019

e J. M., S. Gaiffas. An improper estimator with optimal excess risk in
misspecified density estimation and logistic regression. Submitted,
arXiv:1912.10784, 2019
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Thank youl!
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Complements




SMP in the Gaussian linear model

Non-uniform bounds

e Before: uniform excess risk bounds over F for n 2 d and Px
non-degenerate (small ball)

¢ Non-uniform bounds over F relevant when (1) X not
regular, or (2) d > n (nonparametric setting)

e SMP with Ridge penalization ¢(6) = \||0]|%/2
Replace previous assumptions by || X|| < R

e E.g. bounded kernel case: x = ®(x’) with feature map
¢ X — R, such that K(x',x") = (®(x), d(x")) < R?

37



Remark: parameter scaling (finite dimension)

Assume bounded:

e Condition number ¢ = ||Z|| - | =7 = Mnax(E)/Amin(X)
e Leverage |Z12X| < pVd as. (p > 1 since E[||Z~2X||?] = d)
o Signal strength 1 := ||0||x = E[(8, X)?]'/2

Then, if ¢, p,1» = O(1),

Il - 1X|| < Y?pVd = BR = O(Vd)

Note: we can have BR < V/d if ¥ non-isotropic and # “aligned”
with X (non-parametric setting)

38



SMP in the Gaussian linear model

Degrees of freedom of Ridge estimator (Wahba 1990)
dfA(Z) = tr[(Z + AN LX)

Note that df\(X) < d and df\(X) < R?/X if || X]| < R.
Theorem (Ridge SMP: nonparametric)

Assume E[Y?] < +o00 and || X|| < R. Then Ridge-SMP satisfies,
for A\ > 2R?/(n+ 1),

~ df\(Z
E[R(fn)] — inf {R(fy) + é\|9||2 < 1.25L
9eRrd 2 n+1

e Replaces d by df\(X). Nonparametric rate, same bound as
well-specified case (minimax over ball), indep. of o2, E[Y|X]

39



SMP in the Gaussian linear model

Proposition (Ridge SMP: finite dimension)
Assume E[Y?] < +oo and || X|| < R. For any B > 0, Ridge-SMP

fA n With X = 3557 satisfies

(n +1)

BR(5A)] -, R(6) = O(W) '

e If BR = O(+/d) (finite dimension): O(d/n) bound
e Kakade and Ng (2005): O(d log(BRn/~/d)/n) = O(dlogn/n)
through sequential problem; SMP removes log n factor

e Also dimension-free bounds (tr[(X + A\/)~1X] instead of d)

40



Comparison with stability bound

e Stability bounds (Bousquet and Elisseeff 2002) depend on
WY BT, X)) — YO, X)), (u) =log(1+e")
e SMP bound depends on o (Y (8,7, X)) — o(Y(8577, X))

When u ~ ¢/ > 1 we have

)~ e (u— o)

Q
~—~
=
—
|
)
—~
<

Explains why we can remove e5F factor (next)
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SMP for logistic regression: guarantees

Theorem (M., Gaiffas, 2019)
Assume || X|| < R. Ridge-SMP satisfies, for A > 2R?/(n + 1)

3dfs(X)

= . )\ 2
E[R(.q)] < jnf {R()+ F 007} + ==

where df\(X) = tr [( + M) 1Z].

e Remark: fast rate under no assumption on Py x

e Similar to fast rates in (Marteau-Ferey et al.
2019) (although more precise bias term in this case)
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