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Predictive density estimation



Predictive density estimation: setting

• Space Z; i.i.d. sample Zn
1 = (Z1, . . . ,Zn) ∼ Pn, with P

unknown distribution on Z.
• Given Zn

1 , predict new sample Z ∼ P (probabilistic prediction)

• f density on Z (wrt base measure µ), z ∈ Z, log-loss
`(f , z) = − log f (z). Risk R(f ) = E[`(f ,Z )] where Z ∼ P .

• Family F of densities on Z = statistical model;

• Goal: find density ĝn = ĝn(Zn
1 ) with small excess risk

E[R(ĝn)]− inf
f ∈F

R(f ) .
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On the logarithmic loss: `(f , z) = − log f (z)

• Standard loss function, connected to lossless compression;

• Minimizing risk amounts to maximizing joint probability
attributed to large test sample (Z ′1, . . . ,Z

′
m) ∼ Pm:

m∏
j=1

f (Z ′j ) = exp

(
−

m∑
j=1

`(f ,Z ′j )

)
= exp [−m(R(f ) + o(1))]

• Letting p = dP/dµ be the true density,

R(f )− R(p) = EZ∼P

[
log

(
p(Z )

f (Z )

)]
=: KL(p, f ) > 0 .

Risk minimized by true density: f ∗ = p; excess risk given by
the Kullback-Leibler divergence (relative entropy).
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Well-specified case: asymptotic optimality of the MLE

Here, assume that p ∈ F (well-specified model), with F a regular
parametric family/model of dimension d .

The Maximum Likelihood Estimator (MLE) f̂n, defined by

f̂n := argmin
f ∈F

n∑
i=1

`(f ,Zi ) = argmax
f ∈F

n∏
i=1

f (Zi )

satisfies, as n→∞,

R(f̂n)− inf
f ∈F

R(f ) = KL(p, f̂n) =
d

2n
+ o

(
1
n

)
.

The d/(2n) rate is asymptotically optimal (locally asymptotically
minimax – Hájek, Le Cam): MLE is efficient.
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Misspecified case (statistical learning viewpoint)

Assumption p ∈ F is restrictive and generally not satisfied: model
chosen by the statistician, simplification of the truth.

General misspecified case where p 6∈ F : model F is false but
useful. Excess risk is a relevant objective.

MLE f̂n can degrade under model misspecification:

R(f̂n)− inf
f ∈F

R(f ) =
deff
2n

+ o

(
1
n

)
where deff = Tr[H−1G ], G = E[∇`(f ∗,Z )∇`(f ∗,Z )>],
H = ∇2R(f ∗). Misspecified case: deff depends on P , and we may
have deff � d .

5



Cumulative risk/regret and online-to-batch conversion

Well-established theory (Merhav 1998, Cesa-Bianchi & Lugosi 2006)

for controlling cumulative excess risk

Regretn =
n∑

t=1

`(ĝt−1,Zt)− inf
f ∈F

n∑
t=1

`(f ,Zt) ;

F bounded family: minimax regret of (d log n)/2 + O(1). Implies
excess risk of (d log n)/(2n) + O(1/n) for averaged predictor:

ḡn =
1

n + 1

n∑
t=0

ĝt .

⊕ Valid under model misspecification (distribution-free);

	 Suboptimal rate for individual risk, inefficient predictor. Infinite
for unbounded families (eg Gaussian), computational complexity.
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The Sample Minimax Predictor



The Sample Minimax Predictor (SMP)

We introduce the Sample Minimax Predictor, given by:

f̃n = argmin
g

sup
z∈Z

[`(g , z)− `(f̂ zn , z)] =
f̂ zn (z)∫

Z f̂ z ′n (z ′)µ(dz ′)

where

f̂ zn = argmin
f ∈F

{
n∑

i=1

`(f ,Zi ) + `(f , z)

}
.

• In general, f̃n 6∈ F : improper predictor.

• Conditional variant f̃n(y |x) for conditional density estimation.

• Regularized variant.
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Excess risk bound for the SMP

f̃n(z) =
f̂ zn (z)∫

Z f̂ z ′n (z ′)µ(dz ′)
(1)

Theorem (M., Gaïffas, Scornet, 2019)

The SMP f̃n (1) satisfies:

E
[
R(f̃n)

]
− inf

f ∈F
R(f ) 6 EZn

1

[
log
(∫
Y
f̂
(z)
n (z)µ(dz)

)]
. (2)

• Analogous excess risk bound in the conditional case.

• Typically simple d/n + o(n−1) bound for standard models
(Gaussian, multinomial), even in misspecified case.
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Application: Gaussian linear model



Gaussian linear model

• Conditional density estimation problem.

• Probabilistic prediction of response Y ∈ R given covariates
X ∈ Rd . Risk of conditional density f (y |x) is

R(f ) = E[`(f (X ),Y )] = E[− log f (Y |X )] .

• F = {fβ : β ∈ Rd} with fβ(·|x) = N (〈β, x〉, 1), so that

`(fβ, (x , y)) =
1
2

(y − 〈β, x〉)2

• MLE is f̂n(·|x) = N (〈β̂n, x〉, 1), with β̂n ordinary least squares:

β̂n = argmin
β∈Rd

n∑
i=1

(Yi − 〈β,Xi 〉)2 =

(
n∑

i=1

XiX
>
i

)−1 n∑
i=1

YiXi
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SMP for the Gaussian linear model

Σ = E[XX>], Σ̂n = n−1∑n
i=1 XiX

>
i true/sample covariance matrix

Theorem (Distribution-free excess risk for SMP)

The SMP is f̃n(·|x) = N (〈β̂n, x〉,
(
1 + 〈(nΣ̂n)−1x , x〉

)2
). If

E[Y 2] < +∞, then

E
[
R(f̃n)

]
− inf
β∈Rd

R(β) 6 E
[
− log

(
1−

〈
(nΣ̂n + XX>)−1X ,X

〉︸ ︷︷ ︸
"leverage score"

)]

which is twice the minimax risk in the well-specified case.

• Smaller than E[Tr(Σ1/2Σ̂−1
n Σ1/2)]/n∼ d/n under regularity

assumption on PX (Σ−1/2X not too close to any hyperplane)
• By contrast, for MLE:
E[R(f̂n)]− R(β∗) ∼ E[(Y − 〈β∗,X 〉)2‖Σ−1/2X‖2]/(2n).
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Application to logistic regression



Logistic regression: setting

• Binary label Y ∈ {−1, 1}, covariates X ∈ Rd . Risk of
conditional density f (±1|x)

R(f ) = E[− log f (Y |X )] .

• F = {fβ : β ∈ Rd} family of conditional densities of Y |X :

fβ(y |x) = Pβ(Y = y |X = x) = σ(y〈β, x〉) , y ∈ {−1, 1}

with σ(u) = eu/(1 + eu) sigmoid function. For β, x ∈ Rd ,
y ∈ {±1}

`(β, (x , y)) = log(1 + e−y〈β,x〉)
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Limitations of MLE and proper (plug-in) predictors

• MLE f
β̂n

(y |x) = σ(y〈β̂n, x〉) not fully satisfying for prediction:
– Ill-defined when sets {Xi : Yi = 1} and {Xi : Yi = −1} are

linearly separated, yields 0 or 1 probabilities (⇒ infinite risk).
– Risk deff/(2n); if ‖X‖ 6 R, deff may be as large as1 de‖β

∗‖R .

• Lower bound (Hazan et al., 2014) for any proper (within class)
predictor of min(BR/

√
n, deBR/n).

• Better O(d · log(BRn)/n) through online-to-batch conversion,
with improper predictor (Foster et al., 2018). But
computationally expensive (posterior sampling).

1Bach & Moulines (2013); see also Ostrovskii & Bach (2018).
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Sample Minimax Predictor for logistic regression

The SMP writes:

f̃n(y |x) =
f̂
(x ,y)
n (y |x)

f̂
(x ,−1)
n (−1|x) + f̂

(x ,1)
n (1|x)

where f̂
(x ,y)
n is the MLE obtained when adding (x , y) to the sample.

• Well-defined, even in the separated case; invariant by linear
transformation of X (“prior-free”). Never outputs 0 probability.

• Computationally reasonable: prediction obtained by solving
two logistic regressions (replaces sampling by optimization).

• NB: still more expensive than simple logistic regression (need
to update solution of logistic regression for each test input x).
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Excess risk bound for the penalized SMP

Theorem (M., Gaïffas, Scornet 2019)

Assume that ‖X‖ 6 R a.s. and let λ = 2R2/(n + 1). Then,
logistic SMP with penalty λ‖β‖2/2 satisfies: for every β ∈ Rd ,

E
[
R(f̃λ,n)

]
− R(β) 6

3d
n

+
‖β‖2R2

n
(3)

Remark. Fast rate under no assumption on L(Y |X ).

If R = O(
√
d) and ‖β∗‖ = O(1), then optimal O(d/n) excess risk.

Recall min(BR/
√
n, deBR/n) = min(

√
d/n, de

√
d/n) lower bound

for proper predictors (incl. Ridge logistic regression).

Also better than O(d log n/n) from OTB, but worse dependence on
‖β∗‖.
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Conclusion



Conclusion

Sample Minimax Predictor = procedure for predictive density
estimation. General excess risk bound, typically does not degrade
under model misspecification.

Gaussian linear model: tight bound, within a factor of 2 of minimax.

For logistic regression: simple predictor, bypasses lower bounds for
proper (plug-in) predictors (removes exponential factor for
worst-case distributions).

Next directions:

• Other GLMs?

• Online logistic regression (individual sequences)?

• Application to statistical learning with other loss functions?
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Thank you!
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