Publications
Preprints
H. Chardon, M. Lerasle, J. Mourtada.
Finite-sample performance of the maximum likelihood estimator in logistic regression.
Preprint, 2024.
[PDF]
[arXiv]
J. Mourtada.
Universal coding, intrinsic volumes, and metric complexity.
Preprint, 2023.
[PDF]
[arXiv]
Journal articles
J. Mourtada, L. Rosasco.
An elementary analysis of ridge regression with random design.
Comptes Rendus Mathématique, 360:1055–1063, 2022.
[PDF]
[Link]
[arXiv]
J. Mourtada, T. Vaškevičius, N. Zhivotovskiy.
Distribution-free robust linear regression.
Mathematical Statistics and Learning, 4(3):253–292, 2021.
[PDF]
[Link]
[arXiv]
[Slides]
J. Mourtada, S. Gaïffas.
An improper estimator with optimal excess risk in misspecified density estimation and logistic regression.
Journal of Machine Learning Research, 23(31):1–49, 2022.
[PDF]
[Link]
[arXiv]
[Slides]
J. Mourtada.
Exact minimax risk for linear least squares, and the lower tail of sample covariance matrices.
Annals of Statistics, 50(4):2157–2178, 2022.
[PDF]
[Link]
[arXiv]
J. Mourtada, S. Gaïffas, E. Scornet.
AMF: Aggregated Mondrian forests for online learning.
Journal of the Royal Statistical Society: Series B, 83(3):505–533, 2021.
[PDF]
[Link]
[arXiv]
J. Mourtada, S. Gaïffas.
On the optimality of the Hedge algorithm in the stochastic regime.
Journal of Machine Learning Research, 20(83):1−28, 2019.
[PDF]
[Link]
[arXiv]
[Slides]
J. Mourtada, S. Gaïffas, E. Scornet.
Minimax optimal rates for Mondrian trees and forests.
Annals of Statistics, 48(4):2253−2276, 2020.
[PDF]
[Link]
[arXiv]
Conference proceedings
Preliminary conference versions of journal papers are
indicated as “extended abstracts”; see the list above for final versions.
J. Mourtada, T. Vaškevičius, N. Zhivotovskiy.
Local risk bounds for statistical aggregation.
Extended abstract in Proceedings of the 36th Conference on Learning Theory, PMLR 195:5697-5698, 2023.
[Link]
[arXiv]
D. Richards, J. Mourtada, L. Rosasco.
Asymptotics of ridge(less) regression under general source condition.
Proceedings of the 24th international conference on Artificial Intelligence and Statistics, PMLR 130:3889-3897, 2021.
[Link]
[arXiv]
A. Della Vecchia, J. Mourtada, E. De Vito, L. Rosasco.
Regularized ERM on random subspaces.
Proceedings of the 24th international conference on Artificial Intelligence and Statistics, PMLR 130:4006-4014, 2021.
[Link]
[arXiv]
(Extended abstract)
J. Mourtada, S. Gaïffas, E. Scornet.
Universal consistency and minimax rates for online Mondrian Forests.
In Advances in Neural Information Processing Systems, 2017.
[PDF]
[Link]
[arXiv]
J. Mourtada, O.-A. Maillard.
Efficient tracking of a growing number of experts.
In Proceedings of the 28th international conference on Algorithmic Learning Theory, PMLR 76:517-539, 2017.
[PDF]
[Link]
[arXiv]
[Slides]
Dissertations
|