Publications

Preprints

  • H. Chardon, M. Lerasle, J. Mourtada. Finite-sample performance of the maximum likelihood estimator in logistic regression. Preprint, 2024. [PDF] [arXiv]

  • J. Mourtada. Universal coding, intrinsic volumes, and metric complexity. Preprint, 2023. [PDF] [arXiv]

Journal articles

  • J. Mourtada, L. Rosasco. An elementary analysis of ridge regression with random design. Comptes Rendus Mathématique, 360:1055–1063, 2022. [PDF] [Link] [arXiv]

  • J. Mourtada, T. Vaškevičius, N. Zhivotovskiy. Distribution-free robust linear regression. Mathematical Statistics and Learning, 4(3):253–292, 2021. [PDF] [Link] [arXiv] [Slides]

  • J. Mourtada, S. Gaïffas. An improper estimator with optimal excess risk in misspecified density estimation and logistic regression. Journal of Machine Learning Research, 23(31):1–49, 2022. [PDF] [Link] [arXiv] [Slides]

  • J. Mourtada. Exact minimax risk for linear least squares, and the lower tail of sample covariance matrices. Annals of Statistics, 50(4):2157–2178, 2022. [PDF] [Link] [arXiv]

  • J. Mourtada, S. Gaïffas, E. Scornet. AMF: Aggregated Mondrian forests for online learning. Journal of the Royal Statistical Society: Series B, 83(3):505–533, 2021. [PDF] [Link] [arXiv]

  • J. Mourtada, S. Gaïffas. On the optimality of the Hedge algorithm in the stochastic regime. Journal of Machine Learning Research, 20(83):1−28, 2019. [PDF] [Link] [arXiv] [Slides]

  • J. Mourtada, S. Gaïffas, E. Scornet. Minimax optimal rates for Mondrian trees and forests. Annals of Statistics, 48(4):2253−2276, 2020. [PDF] [Link] [arXiv]

Conference proceedings

Preliminary conference versions of journal papers are indicated as “extended abstracts”; see the list above for final versions.

  • J. Mourtada, T. Vaškevičius, N. Zhivotovskiy. Local risk bounds for statistical aggregation. Extended abstract in Proceedings of the 36th Conference on Learning Theory, PMLR 195:5697-5698, 2023. [Link] [arXiv]

  • D. Richards, J. Mourtada, L. Rosasco. Asymptotics of ridge(less) regression under general source condition. Proceedings of the 24th international conference on Artificial Intelligence and Statistics, PMLR 130:3889-3897, 2021. [Link] [arXiv]

  • A. Della Vecchia, J. Mourtada, E. De Vito, L. Rosasco. Regularized ERM on random subspaces. Proceedings of the 24th international conference on Artificial Intelligence and Statistics, PMLR 130:4006-4014, 2021. [Link] [arXiv]

  • (Extended abstract) J. Mourtada, S. Gaïffas, E. Scornet. Universal consistency and minimax rates for online Mondrian Forests. In Advances in Neural Information Processing Systems, 2017. [PDF] [Link] [arXiv]

  • J. Mourtada, O.-A. Maillard. Efficient tracking of a growing number of experts. In Proceedings of the 28th international conference on Algorithmic Learning Theory, PMLR 76:517-539, 2017. [PDF] [Link] [arXiv] [Slides]

Dissertations